μTAS 2019
The 23rd International Conference on Miniaturized Systems for Chemistry and Life Sciences

Final PROGRAM

Congress Center Basel
Basel, SWITZERLAND

Conference Chairs
Petra Dittrich
ETH Zürich, SWITZERLAND
Andreas Hierlemann
ETH Zürich, SWITZERLAND
Emmanuel Delamarche
IBM Research – Zürich, SWITZERLAND

Sponsored by CBMS
Chemical and Biological Microsystems Society
With Generous Support from Basel

Basel
basel.ch
CONFERENCE AT A GLANCE

SUNDAY, 27 OCTOBER

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30</td>
<td>Workshop Registration</td>
</tr>
<tr>
<td>09:00 - 17:00</td>
<td>Morning and Afternoon Workshops</td>
</tr>
<tr>
<td>17:00 - 19:00</td>
<td>Conference Registration and Check-In</td>
</tr>
<tr>
<td>17:00 - 19:00</td>
<td>Wine and Cheese Welcome Reception</td>
</tr>
</tbody>
</table>

MONDAY, 28 OCTOBER

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>07:00 - 18:15</td>
<td>Registration</td>
</tr>
<tr>
<td>08:00 - 08:30</td>
<td>Opening Remarks</td>
</tr>
<tr>
<td>08:30 - 09:15</td>
<td>PLENARY PRESENTATION I</td>
</tr>
<tr>
<td></td>
<td>James R. Heath – Institute for Systems Biology Seattle, USA</td>
</tr>
<tr>
<td>09:15 - 09:30</td>
<td>Transition</td>
</tr>
<tr>
<td>09:30 - 10:30</td>
<td>SESSION 1A1 Exosomes Trapping and Isolation</td>
</tr>
<tr>
<td></td>
<td>SESSION 1B1 Particle Separation</td>
</tr>
<tr>
<td></td>
<td>SESSION 1C1 Synthetic Biology Using Droplets</td>
</tr>
<tr>
<td>10:30 - 11:00</td>
<td>Break: Exhibit and Poster Inspection</td>
</tr>
<tr>
<td>11:00 - 12:20</td>
<td>SESSION 1A2 Single Cell Analysis (Secretion)</td>
</tr>
<tr>
<td></td>
<td>SESSION 1B2 Reconfigurable & Self-Powered Dev.</td>
</tr>
<tr>
<td></td>
<td>SESSION 1C2 Separation and Assays in Droplets</td>
</tr>
<tr>
<td>12:20 - 13:10</td>
<td>Grab ‘n Go Lunch</td>
</tr>
<tr>
<td>13:10 - 13:15</td>
<td>Analytical Chemistry – Young Innovator Award Presentation</td>
</tr>
<tr>
<td>13:15 - 14:00</td>
<td>PLENARY PRESENTATION II</td>
</tr>
<tr>
<td></td>
<td>Keisuke Goda – University of Tokyo Tokyo, JAPAN</td>
</tr>
<tr>
<td>14:00 - 16:30</td>
<td>Poster Session 1 and Exhibit Inspection</td>
</tr>
<tr>
<td>16:30 - 18:00</td>
<td>SESSION 1A3 Single-Cell Analysis (Secretion)</td>
</tr>
<tr>
<td></td>
<td>SESSION 1B3 Organs on Chip</td>
</tr>
<tr>
<td></td>
<td>SESSION 1C3 Genetic Engineering</td>
</tr>
<tr>
<td></td>
<td>KEYNOTE PRESENTATION Angela Wu</td>
</tr>
<tr>
<td></td>
<td>KEYNOTE PRESENTATION Adrian Roth</td>
</tr>
<tr>
<td></td>
<td>KEYNOTE PRESENTATION Randall J. Platt</td>
</tr>
<tr>
<td>18:00 - 19:30</td>
<td>MicroTAS Student Mixer</td>
</tr>
<tr>
<td>18:00</td>
<td>Women’s Faculty Event</td>
</tr>
</tbody>
</table>

TUESDAY, 29 OCTOBER

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:15 - 08:30</td>
<td>Announcements</td>
</tr>
<tr>
<td>08:30 - 09:15</td>
<td>PLENARY PRESENTATION III</td>
</tr>
<tr>
<td></td>
<td>Stefan W. Hell – Max Planck Institute for Biophysical Chemistry Gottingen, GERMANY</td>
</tr>
<tr>
<td>09:15 - 09:30</td>
<td>Transition</td>
</tr>
<tr>
<td>09:30 - 10:50</td>
<td>SESSION 2A1 Exosomes and Extracellular Vesicles</td>
</tr>
<tr>
<td></td>
<td>SESSION 2B1 Paper Microfluidics and Devices</td>
</tr>
<tr>
<td></td>
<td>SESSION 2C1 Culture for Cells, Organisms & Plants</td>
</tr>
<tr>
<td></td>
<td>KEYNOTE PRESENTATION Catherine Alix-Panabières</td>
</tr>
<tr>
<td></td>
<td>KEYNOTE PRESENTATION Dhananjaya Dendukuri</td>
</tr>
<tr>
<td></td>
<td>KEYNOTE PRESENTATION David Sinton</td>
</tr>
<tr>
<td>10:50 - 11:20</td>
<td>Break: Exhibit and Poster Inspection</td>
</tr>
<tr>
<td>11:20 - 12:20</td>
<td>Industrial Forum Session</td>
</tr>
<tr>
<td>12:20 - 12:35</td>
<td>MicroTAS 2020 Announcement</td>
</tr>
<tr>
<td>12:35 - 14:00</td>
<td>Grab ‘n Go Lunch</td>
</tr>
<tr>
<td>12:40 - 14:00</td>
<td>Industrial Stage 1 (Singapore Room)</td>
</tr>
<tr>
<td>14:00 - 16:30</td>
<td>Poster Session 2 and Exhibit Inspection</td>
</tr>
<tr>
<td>16:30 - 18:00</td>
<td>SESSION 2A3 Circulating Tumor Cells</td>
</tr>
<tr>
<td></td>
<td>SESSION 2B3 Immunoassays and POC Devices</td>
</tr>
<tr>
<td></td>
<td>SESSION 2C3 Nanochannels</td>
</tr>
<tr>
<td></td>
<td>KEYNOTE PRESENTATION Catherine Alix-Panabières</td>
</tr>
<tr>
<td></td>
<td>KEYNOTE PRESENTATION Dhananjaya Dendukuri</td>
</tr>
<tr>
<td></td>
<td>KEYNOTE PRESENTATION David Sinton</td>
</tr>
</tbody>
</table>
CONFERENCE AT A GLANCE

WEDNESDAY, 30 OCTOBER

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:15 - 08:30</td>
<td>Announcements</td>
<td></td>
</tr>
<tr>
<td>08:30 - 09:15</td>
<td>PLENARY PRESENTATION IV</td>
<td>Peng Yin – Harvard University, Boston, USA</td>
</tr>
<tr>
<td>09:15 - 09:30</td>
<td>Transition</td>
<td></td>
</tr>
<tr>
<td>09:30 - 10:30</td>
<td>SESSION 3A1</td>
<td>Pathogen Detection & Analysis</td>
</tr>
<tr>
<td></td>
<td>SESSION 3B1</td>
<td>Devices for Detection and Imaging</td>
</tr>
<tr>
<td></td>
<td>SESSION 3C1</td>
<td>Surface Patterning</td>
</tr>
<tr>
<td>10:30 - 11:00</td>
<td>Break: Exhibit and Poster Inspection</td>
<td></td>
</tr>
<tr>
<td>11:00 - 12:20</td>
<td>SESSION 3A2</td>
<td>Blood Cell and Blood Flow Analysis</td>
</tr>
<tr>
<td></td>
<td>SESSION 3B2</td>
<td>3D Writing and Printing</td>
</tr>
<tr>
<td></td>
<td>SESSION 3C2</td>
<td>Active Particles and Particle Assemblies</td>
</tr>
<tr>
<td>12:20 - 13:10</td>
<td>Grab 'n Go Lunch</td>
<td></td>
</tr>
<tr>
<td>12:25 - 13:05</td>
<td>Industrial Stage 2</td>
<td>(Singapore Room)</td>
</tr>
<tr>
<td>13:10 - 13:55</td>
<td>PLENARY PRESENTATION V</td>
<td>Zulfiqar A. Bhutta – Hospital for Sick Children, Toronto, Canada</td>
</tr>
<tr>
<td>13:55 - 14:15</td>
<td>Lab on a Chip and Dolomite – Pioneers in Miniaturization Lectureship Prize and Presentation</td>
<td></td>
</tr>
<tr>
<td>14:15 - 16:45</td>
<td>Poster Session 3 and Exhibit Inspection</td>
<td></td>
</tr>
<tr>
<td>14:30 - 14:45</td>
<td>NIST and Lab on a Chip – Art in Science Award</td>
<td>(in Royal Society of Chemistry Booth Number 63, First Floor)</td>
</tr>
<tr>
<td>16:00</td>
<td>Exhibitor Raffle</td>
<td>(in Zurich Instruments Booth # 7 - Ground Floor)</td>
</tr>
<tr>
<td>16:15 - 16:45</td>
<td>Break: Exhibit and Poster Inspection</td>
<td></td>
</tr>
<tr>
<td>16:45 - 18:15</td>
<td>SESSION 3A3</td>
<td>Spheroids and Organoids</td>
</tr>
<tr>
<td></td>
<td>SESSION 3B3</td>
<td>Manipulation of Cells</td>
</tr>
<tr>
<td></td>
<td>SESSION 3C3</td>
<td>Nanopores and Nanochannels</td>
</tr>
<tr>
<td></td>
<td>KEYNOTE PRESENTATION</td>
<td>Jianhua Qin</td>
</tr>
<tr>
<td></td>
<td>KEYNOTE PRESENTATION</td>
<td>Cullen R. Buie</td>
</tr>
<tr>
<td></td>
<td>KEYNOTE PRESENTATION</td>
<td>Sumita Pennathur</td>
</tr>
<tr>
<td>19:00 - 23:00</td>
<td>Conference Banquet</td>
<td></td>
</tr>
</tbody>
</table>

THURSDAY, 31 OCTOBER

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:45 - 10:15</td>
<td>SESSION 4A1</td>
<td>Droplet Microfluidics Interfaced with Mass Spectrometry</td>
</tr>
<tr>
<td></td>
<td>SESSION 4B1</td>
<td>Wearables</td>
</tr>
<tr>
<td></td>
<td>SESSION 4C1</td>
<td>Biofibers Dynamics and Assemblies at the Microscale</td>
</tr>
<tr>
<td></td>
<td>KEYNOTE PRESENTATION</td>
<td>Detlev Belder</td>
</tr>
<tr>
<td></td>
<td>KEYNOTE PRESENTATION</td>
<td>Stéphanie P. Lacour</td>
</tr>
<tr>
<td></td>
<td>KEYNOTE PRESENTATION</td>
<td>Rikiya Watanabe</td>
</tr>
<tr>
<td>10:15 - 10:45</td>
<td>Break: Exhibit and Poster Inspection</td>
<td></td>
</tr>
<tr>
<td>10:45 - 11:45</td>
<td>SESSION 4A2</td>
<td>Analysis of Neutrophils for Diagnosis of Sepsis and Inflammation</td>
</tr>
<tr>
<td></td>
<td>SESSION 4B2</td>
<td>Centrifugal Platforms</td>
</tr>
<tr>
<td></td>
<td>SESSION 4C2</td>
<td>Gas Control for Cells</td>
</tr>
<tr>
<td>11:45 - 11:50</td>
<td>Transition</td>
<td></td>
</tr>
<tr>
<td>11:50 - 12:35</td>
<td>PLENARY PRESENTATION VI</td>
<td>Aleksandra Radenovic – École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland</td>
</tr>
<tr>
<td>12:35 - 13:15</td>
<td>AWARDS</td>
<td></td>
</tr>
<tr>
<td>13:15</td>
<td>Closing Remarks - Conference Adjourns</td>
<td></td>
</tr>
</tbody>
</table>
TUESDAY, 29 OCTOBER
12:40 - 14:00

INDUSTRIAL STAGE 1a
12:40 - 13:00

NEW APPLICATIONS IN PRESSURE CONTROL AND DROPLET GENERATION IN MICROFLUIDICS
Presenter: France Hamber
Fluigent
www.fluigent.com

Fluigent’s broad range of solutions for use in microfluidic technologies and nanofluidics applications offer greater control, automation, precision, and ease of use. If you’re seeking to replace high-precision syringe pumps or other conventional instruments, we offer excellent solutions that minimize contamination and ensure full control of flow rates. In this industrial stage, we will present our new solutions and applications in pressure control and droplet generation.

INDUSTRIAL STAGE 1b
13:00 - 13:20

SE ROLE HEN VALYRĪHA KORZION ISSE MICROFLUIDICS – THE USEFULNESS OF VALYRIAN STEEL FOR MICROFLUIDICS
Presenter: Holger Becker
microfluidic ChipShop GmbH
www.microfluidic-chipshop.com

In the transfer from academic lab work to a commercial microfluidics product, materials and manufacturing methods play a decisive role. This presentation will point out some of the critical stumbling blocks during this transition together with suggestions on how to select materials and manufacturing methods to make academic microfluidic designs scaleable for a later industrial manufacturing.

INDUSTRIAL STAGE 1c
13:20 - 13:40

THE TASTE OF PRECISION
Presenter: Melanie Büttner
CETONI GmbH
www.cetoni.de

Microfluidic biological as well as chemical applications are not only characterized by contrasts such as resistance to harsh chemicals vs. sterility of the system, they also have one thing in common: precise and pulsation-free fluid delivery. The unique modularity of the CETONI-system allows a variety of applications merged with our software to automate these processes. In this presentation we show how the different advantages of the neMESYS syringe pump series can be used for customer-specific applications. And a short insight about a customer setup will be given. A compact setup for precise and reproducible delivery of liquid taste stimuli was developed. The high precision and easy usability of the neMESYS syringe pumps, combined with an elaborated setup, allowed the researchers to present taste stimuli with high precision to earn reproducible results.
As Lab-on-a-Chip devices are increasingly getting more complex including components of different form factors and materials, thus advanced and scalable integration processes are required. As a market leading supplier of wafer bonding and nanoimprint lithography (NIL) equipment, we will demonstrate how these technologies are applied to microfluidics chips. We will discuss processes for hybrid integration schemes such as CMOS integration and will show how NIL can be used to integrate on-chip optical bio-sensing by nanometer-scale resolution patterns.
DIAGNOSTIC CONSUMABLES: WHERE IS THIS CHALLENGING MARKET HEADED?
Presenter: James Downs

The growth in the use of automated health-care related diagnostic consumables is exploding. However, creating these consumables can be quite challenging. Globally, profound scientific advances are occurring in medical diagnostic technologies. These technologies will play an increasingly important role in delivering more efficient medical care as our health care systems are burdened by multiple demographic and cost factors. However, harnessing these advances in such a way as to functionalize them into a miniaturized consumable will require both a deep understanding of the underlying technical challenges and a broad set of manufacturing capabilities to overcome them. As a published economist whose focus is on innovation in highly knowledge-intensive industries, in this presentation, James Downs will overview the particular challenges of this dynamic environment and highlight the capabilities needed to address them effectively.

SENSORS FOR ONLINE MONITORING OF O₂, PH AND CO₂ IN MICROFLUIDICS
Presenter: Daniela Obermaier

Cell and μ-tissue culture in microfluidics gained huge popularity during the past years. Small volumes and controlled geometry makes microfluidics a perfect tool to conduct fast and reproducible experiments. On the way towards mimicking physiological in vivo conditions in microfluidics, the volume restrictions and its implications on e.g. oxygen and nutrient availability have to be kept carefully in mind. Monitoring of important culture parameters is crucial but challenging in microfluidics and millifluidics. Optical chemical sensors are perfectly suited for this purpose since they allow for minimal or even non-invasive monitoring in very small volumes. We present different sensor formats for online monitoring of oxygen, pH and carbon dioxide in microfluidic chips.
MONDAY, 28 OCTOBER
08:30 - 09:15
Plenary Presentation I
ENGINEERED TOOLS FOR IMMUNOTHERAPIES
James R. Heath
Institute for Systems Biology
Seattle, USA

TUESDAY, 29 OCTOBER
08:30 - 09:15
Plenary Presentation III
MINIFLUX NANOSCOPY: SUPERRESOLUTION POST NOBEL
Stefan W. Hell
Max Planck Institute for Biophysical Chemistry
Göttingen, GERMANY

WEDNESDAY, 30 OCTOBER
08:30 - 09:15
Plenary Presentation IV
ENGINEERING DNA DEVICES TO ADVANCE BIOIMAGING AND BIOSENSING
Peng Yin
Harvard University
Boston, USA

13:10 - 13:55
Plenary Presentation V
ADDRESSING NEWBORN SURVIVAL GLOBALLY: THE ROLE OF INNOVATIONS IN MOVING FROM POLICY TO ACTION
Zulfiqar A. Bhutta
Hospital for Sick Children
Toronto, CANADA

THURSDAY, 31 OCTOBER
11:50 - 12:35
Plenary Presentation VI
A TALE OF SINGLE PORE IN QUASI 2D MEMBRANES
Aleksandra Radenovic
École Polytechnique Fédérale de Lausanne (EPFL)
Lausanne, SWITZERLAND
MONDAY, 28 OCTOBER
16:45 - 17:15

<table>
<thead>
<tr>
<th>Session 1A3 - Single-Cell Manipulation & Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHARACTERIZATION OF OPTIMAL CULTURE CONDITIONS FOR MICROFLUIDIC 3D VASCULATURE-ON-CHIP</td>
</tr>
<tr>
<td>Angela Wu
Hong Kong University of Science and Technology
Hong Kong, HONG KONG</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session 1B3 - Organs on Chip</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADVANCED CELL MODELS, ORGANS ON CHIPS & MICROPHYSIOLOGICAL SYSTEMS AS INNOVATIVE TOOLS TO SUPPORT DRUG DEVELOPMENT</td>
</tr>
<tr>
<td>Adrian Roth
Roche Innovation Center
Basel, SWITZERLAND</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session 1C3 - Genetic Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRANSCRIPTIONAL RECORDING BY CRISPR SPACER ACQUISITION FROM RNA</td>
</tr>
<tr>
<td>Randall J. Platt
ETH Zürich
Basel, SWITZERLAND</td>
</tr>
</tbody>
</table>

TUESDAY, 29 OCTOBER
16:30 - 17:00

<table>
<thead>
<tr>
<th>Session 2A3 - Circulating Tumor Cells & Cancer Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIRCULATING TUMOR CELLS AS LIQUID BIOPSY: FINDING RARE EVENTS FOR A HUGE KNOWLEDGE OF CANCER DISSEMINATION</td>
</tr>
<tr>
<td>Catherine Alix-Panabières
University of Montpellier
Montpellier, FRANCE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session 2B3 - Immunoassays & Point-of-Care Devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>A POINT-OF-CARE IMMUNOASSAY PLATFORM FOR THYROID FUNCTION BASED ON HYDROGEL SENSORS EMBEDDED INSIDE A MICROFLUIDIC DEVICE</td>
</tr>
<tr>
<td>Dhananjaya Dendukuri
Achira Labs, Pvt. Ltd.
Bangalore, INDIA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session 2C3 - Nanochannels</th>
</tr>
</thead>
<tbody>
<tr>
<td>NANOFLOIDICS FOR ENERGY AND ENVIRONMENTAL APPLICATIONS</td>
</tr>
<tr>
<td>David Sinton
University of Toronto
Toronto, CANADA</td>
</tr>
</tbody>
</table>
WEDNESDAY, 30 OCTOBER
16:45 - 17:15

Session 3A3 - Spheroids & Organoids
ORGANOIDS-ON-CHIPS TO ADVANCE HEALTH SCIENCE
Jianhua Qin
Chinese Academy of Sciences
Dalian, CHINA

Session 3B3 - Manipulation of Cells
AUTOMATED MICROFLUIDIC GENETIC MANIPULATION FOR HIGH THROUGHPUT BIOLOGY
Cullen R. Buie
Massachusetts Institute of Technology
Cambridge, USA

Session 3C3 - Nanopores & Nanochannels
BIPOLAR ELECTRODES FOR MICROFLUIDIC PUMPING
Sumita Pennathur
University of California, Santa Barbara
Santa Barbara, USA

THURSDAY, 31 OCTOBER
08:45 - 09:15

Session 4A1 - Droplets, Mass. Spectrometry or OMICS
INTERFACING DROPLET CHIPS TO MASS SPECTROMETRY
Detlev Belder
University of Leipzig
Leipzig, GERMANY

Session 4B1 - Wearables
SKIN-LIKE, MICROFABRICATED GALLIUM-BASED SENSORS FOR MOTION CAPTURE
Stéphanie P. Lacour
École Polytechnique Fédérale de Lausanne (EPFL)
Lausanne, SWITZERLAND

Session 4C1 - Biofibers Dynamics & Assemblies at the Microscale
MICROSYSTEMS FOR SINGLE MOLECULE ANALYSIS OF MEMBRANE PROTEINS
Rikiya Watanabe
RIKEN
Saitama, JAPAN
Meet with Plenary and Keynote presenters after their talk to ask questions that there may not have been time for. The Speaker Corner will be located in the Second Floor Foyer outside the meeting rooms on the following days and times.

MONDAY, 28 OCTOBER
- 10:30: Plenary Speaker I – James R. Heath
- 14:00: Plenary Speaker II – Keisuke Goda

TUESDAY, 29 OCTOBER
- 10:30: Plenary Speaker III – Stefan W. Hell
- 14:15: Plenary Speaker V – Zulfiqar A. Bhutta
- 18:15: Plenary Speaker VI – Aleksandra Radenovic

WEDNESDAY, 30 OCTOBER
- 10:30: Plenary Speaker IV – Peng Yin
- 14:15: Plenary Speaker V – Zulfiqar A. Bhutta
- 18:15: Keynote Speaker Session 3A3 – Jianhua Qin

THURSDAY, 31 OCTOBER
- 10:15: Keynote Speaker Session 4A1 – Detlev Belder
- 13:20: Plenary Speaker VI – Aleksandra Radenovic

Ancient Roman Wall in Kaiseraugst near Basel
Parallel Oral Sessions
Each day papers will be presented in three parallel sessions. There will be a total of 99 oral sessions throughout the Conference.

Guide to Understanding Session Numbering
Each session in the technical program is assigned a unique number which clearly indicates when and where the session is presented. The number of each session is shown before the session title.

Session Number: 1A1
The first character (i.e., 1) indicates the day of the Conference:

\[
\begin{align*}
1 & = \text{Monday} \\
2 & = \text{Tuesday} \\
3 & = \text{Wednesday} \\
4 & = \text{Thursday}
\end{align*}
\]

The second character (i.e., A) indicates which room the session is held in:

\[
\begin{align*}
A & = \text{San Francisco, Third Floor} \\
B & = \text{Singapore, Second Floor} \\
C & = \text{Sydney, Second Floor}
\end{align*}
\]

The third character (i.e., 1) shows the sequence the session is held during the day:

\[
\begin{align*}
1 & = \text{Concurrent Session 1 - morning} \\
2 & = \text{Concurrent Session 2 - late-morning} \\
3 & = \text{Concurrent Session 3 - afternoon}
\end{align*}
\]

Posters
Three poster sessions will be held on two floors of the Congress Center on Monday, Tuesday, and Wednesday. Posters 1 - 82 will be located on the ground floor. Posters 83 - 248 will be located on the first floor. All posters are listed with their assigned number and day that they are on display. Authors will be available for questions during their appointed time. Posters are color coded by day and classification to coordinate with the poster floor plan on the last page of this program.

Guide to Understanding Poster Numbering
Each poster is assigned a unique number which clearly indicates when and where the poster is presented. The number of each poster is shown before the title.

Poster Number: M001a
The first character (i.e., M) indicates the day of the Conference that the poster will be on display:

\[
\begin{align*}
M & = \text{Monday} \\
T & = \text{Tuesday} \\
W & = \text{Wednesday}
\end{align*}
\]

The second character (i.e., 001) is the poster board position on the floor plan. The last character (i.e., a) shows the classification color of the poster.
μTAS 2020
Palm Springs
California
October 4–8, 2020
The 24th International Conference on Miniaturized Systems for Chemistry and Life Sciences

Save the Date!
October 4–8, 2020

Palm Springs Convention Center
California, USA

Conference Chairs:
Amy E. Herr – University of California, Berkeley, USA
Joel Voldman – Massachusetts Institute of Technology, USA

cbmsociety.org/microtas2020
SUNDAY, 27 OCTOBER

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Speakers</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30</td>
<td>Workshop Registration</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 09:00 - 12:00 | Morning Workshops | **Workshop 1**
DESIGN TOOLS FOR MICROFLUIDIC DEVICES
Robert Wille¹, Jan Madsen², and Ulf Schlichtmann³
¹Johannes Kepler University, AUSTRIA,
²Technical University of Denmark, DENMARK, and
³Technische Universität München, GERMANY

Workshop 2
COMMERCIALIZATION OF MICROFLUIDIC DEVICES AND SYSTEMS
Holger Becker
microfluidic ChipShop GmbH, GERMANY

Workshop 3
CARING FOR CELLS IN MICROSYSTEMS: ENSURING CELL-SAFE DEVICE DESIGN AND OPERATION
Sarvesh Varma and Joel Voldman
Massachusetts Institute of Technology, USA

Workshop 4
AG ELECTROKINETICS IN MICROSYSTEMS FOR SINGLE-CELL CYTOMETRY, MANIPULATION AND SENSING
Nathan Swami¹ and Federica Caselli²
¹University of Virginia, USA and
²University of Rome Tor Vergata, ITALY

Workshop 5
SPICE UP YOUR CHIPS WITH ELECTRONIC GADGETS AND ARDUINO
Yuksel Temiz
IBM Research – Zürich, SWITZERLAND

| 14:00 - 17:00 | Afternoon Workshops | **Workshop 6**
INTEGRATING THE NEEDS OF USERS INTO POINT-OF-CARE DIAGNOSTICS
Jaqueline Linnes
Purdue University, USA

Workshop 7
OPEN-SPACE MICROFLUIDICS: CONCEPTS, IMPLEMENTATIONS AND APPLICATIONS
Govind Kaigala¹, Patrick Misun², and Tomaso Zambelli²
¹IBM Research – Zürich, SWITZERLAND and
²ETH Zurich, SWITZERLAND

Workshop 8
LIVE CELL IMAGING IN MICROFLUIDICS
Tom Lummens¹, Oliver Biehlmaier², and Gregor Schmidt¹
¹ETH Zurich, SWITZERLAND and
²University of Basel, SWITZERLAND

Workshop 9
3D PRINTING TOOLS
Michael Breadmore¹, Rosanne Guijt², Greg Nordin², and Egan Doeyen²
¹University of Tasmania, AUSTRALIA, ²Deakin University, AUSTRALIA, and ³Brigham Young University, USA

Workshop 10
ORGAN-ON-A-CHIP: MERGING MICROFABRICATION WITH TISSUE ENGINEERING
Peter Loskill¹, Olivier Guenat², and Olivier Frey³
¹Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, GERMANY, ²University of Bern, SWITZERLAND, and ³InSphero AG, SWITZERLAND

17:00 - 19:00 | Conference Registration and Check-In | **Workshop 6**
 | **Workshop 7**
 | **Workshop 8**
 | **Workshop 9**
 | **Workshop 10**
 | |
Cost effective Glass Components for Life Science, Diagnostics and Medical Applications

IMT develops and produces large volumes of consumables, custom-made microfluidic devices, optical components and sensors in glass and quartz.

Capabilities
- Structured metallic and dielectric coatings
- Etching of channels and nanopatterns
- Integration of on-chip electrodes, waveguides, optical filters and chemical (bio-)functionalization materials

Applications
- Sequencing
- Lab-on-a-Chip
- Organ-on-a-Chip
- Single Cell Detection & Analysis
- HTS
- microarrays
- Glass components for medical instruments & equipment

T +41 44 943 19 00
imtag.ch

Flow Cell for Next Generation Sequencing

ISO 9001:2015
MONDAY AT A GLANCE

MONDAY, 28 OCTOBER

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>07:00 - 18:15</td>
<td>Registration</td>
</tr>
<tr>
<td>08:00 - 08:30</td>
<td>Opening Remarks</td>
</tr>
<tr>
<td>08:30 - 09:15</td>
<td>PLENARY PRESENTATION I
James R. Heath – Institute for Systems Biology
Seattle, USA</td>
</tr>
<tr>
<td>09:15 - 09:30</td>
<td>Transition</td>
</tr>
<tr>
<td>09:30 - 10:30</td>
<td>SESSION 1A1 Exosomes Trapping and Isolation
SESSION 1B1 Particle Separation
SESSION 1C1 Synthetic Biology Using Droplets</td>
</tr>
<tr>
<td>10:30 - 11:00</td>
<td>Break: Exhibit and Poster Inspection</td>
</tr>
<tr>
<td>11:00 - 12:00</td>
<td>SESSION 1A2 Single Cell Analysis (Secretion)
SESSION 1B2 Reconfigurable and Self-Powered Devices
SESSION 1C2 Separation and Assays in Droplets</td>
</tr>
<tr>
<td>12:20 - 13:10</td>
<td>Grab ‘n Go Lunch</td>
</tr>
<tr>
<td>13:10 - 13:15</td>
<td>Analytical Chemistry – Young Innovator Award Presentation
Award Recipient: Keisuke Goda, University of Tokyo, JAPAN</td>
</tr>
<tr>
<td>13:15 - 14:00</td>
<td>PLENARY PRESENTATION II
Keisuke Goda – University of Tokyo
Tokyo, JAPAN</td>
</tr>
<tr>
<td>14:00 - 16:30</td>
<td>Poster Session 1 and Exhibit Inspection</td>
</tr>
<tr>
<td>16:00 - 16:30</td>
<td>Break</td>
</tr>
<tr>
<td>16:30 - 18:00</td>
<td>SESSION 1A3 Single-Cell Manipulation and Analysis
SESSION 1B3 Organs on Chip
SESSION 1C3 Genetic Engineering</td>
</tr>
<tr>
<td>18:00 - 19:30</td>
<td>MicroTAS Student Mixer</td>
</tr>
<tr>
<td>18:00</td>
<td>Women’s Faculty Event</td>
</tr>
</tbody>
</table>

Registration

- **07:00 - 18:15**
Registration
- **08:00 - 08:30**
Opening Remarks
Nicole Pamme, University of Hull, UK
- **08:30 - 09:15**
PLENARY PRESENTATION I
James R. Heath – Institute for Systems Biology
Seattle, USA
- **09:15 - 09:30**
Transition
- **09:30 - 10:30**
SESSION 1A1 Exosomes Trapping and Isolation
SESSION 1B1 Particle Separation
SESSION 1C1 Synthetic Biology Using Droplets
- **10:30 - 11:00**
Break: Exhibit and Poster Inspection
- **11:00 - 12:00**
SESSION 1A2 Single Cell Analysis (Secretion)
SESSION 1B2 Reconfigurable and Self-Powered Devices
SESSION 1C2 Separation and Assays in Droplets
- **12:20 - 13:10**
Grab ‘n Go Lunch
- **13:10 - 13:15**
Analytical Chemistry – Young Innovator Award Presentation
Award Recipient: Keisuke Goda, University of Tokyo, JAPAN
- **13:15 - 14:00**
PLENARY PRESENTATION II
Keisuke Goda – University of Tokyo
Tokyo, JAPAN
- **14:00 - 16:30**
Poster Session 1 and Exhibit Inspection
- **16:00 - 16:30**
Break
- **16:30 - 18:00**
SESSION 1A3 Single-Cell Manipulation and Analysis
SESSION 1B3 Organs on Chip
SESSION 1C3 Genetic Engineering
- **18:00 - 19:30**
MicroTAS Student Mixer
- **18:00**
Women’s Faculty Event

Canton of Basel-Stadt

Dr. Conradin Cramer, Head of the Education Department

MicroTAS 2019 Conference Chairs

Petra S. Dittrich, ETH Zürich, SWITZERLAND
Andreas Hierlemann, ETH Zürich, SWITZERLAND
Emmanuel Delamarche, IBM Research – Zürich, SWITZERLAND
MINIATURIZATION OF HYDROCYCLONES: THEORETICAL AND EXPERIMENTAL EXPLORATION

Jung Y. Han, Beqir Krasniqi, Jung Kim, Melissa Keckley, and Don L. DeVoe
University of Maryland, USA

THE SEPARATION OF NANO-SIZED PARTICLES IN MICRO-SCALED POST ARRAYS

Jason P. Beech¹, Kevin Keim², Bao Dang Ho¹, Carlotta Guiducci², and Jonas O. Tegenfeldt³
¹Lund University, SWEDEN and
²École Polytechnique Fédérale de Lausanne, (EPFL) SWITZERLAND

10:10 SIZE-BASED BIOMOLECULAR SEPARATION ENABLED BY FIELD-EFFECT ELECTROOSMOSIS

Vesna Bacheva¹,², Federico Paratore¹,², Shimon Rubin¹, Govind V. Kaigala², and Moran Bercovici²
¹Technion - Israel Institute of Technology, ISRAEL and
²IBM Research – Zürich, SWITZERLAND

PLENARY PRESENTATION I

Chair: Amy Herr, University of California Berkeley, USA

San Francisco Room

08:30 ENGINEERED TOOLS FOR IMMUNOTHERAPIES
James R. Heath
Institute for Systems Biology, Seattle, USA

09:30 MULTINODAL HIGH THROUGHPUT ACOUSTIC TRAPPING OF EXOSOMES FROM URINE SAMPLES
Axel Broman, Andreas Lenshof, Mikael Evander, Anson Ku, Yvonne Ceder, and Thomas Laurell
Lund University, SWEDEN

09:50 DIRECT AND SCALABLE ISOLATION OF CIRCULATING EXOSOMES FROM WHOLE BLOOD USING CENTRIFUGAL FORCES

Hui Min Tay¹, Sheng Yuan Leong³, Megha Upadya¹, Fang Kong¹, Hong Kit Lim¹, Rinkoo Dalan¹, Chor Yong Dalton Tay¹, Ming Dao²,³, and Han Wei Hou¹
¹Nanyang Technological University, SINGAPORE,
²Tan Tock Seng Hospital, SINGAPORE, and
³Massachusetts Institute of Technology, USA

10:10 SEPARATION OF SINGLE EXOSOMES UTILIZING A COMPOSITE NANOFLUIDIC STRUCTURE

Haruka Ishibashi¹, Osamu Ishibashi¹, Aya Horikawa¹, Mika Hayashi¹, and Yan Xu¹,²
¹Osaka Prefecture University, JAPAN and
²Japan Science and Technology Agency (JST), JAPAN

Singapore Room

09:30 MINIATURIZATION OF HYDROCYCLONES: THEORETICAL AND EXPERIMENTAL EXPLORATION

Jung Y. Han, Beqir Krasniqi, Jung Kim, Melissa Keckley, and Don L. DeVoe
University of Maryland, USA

09:50 THE SEPARATION OF NANO-SIZED PARTICLES IN MICRO-SCALED POST ARRAYS

Jason P. Beech¹, Kevin Keim², Bao Dang Ho¹, Carlotta Guiducci², and Jonas O. Tegenfeldt³
¹Lund University, SWEDEN and
²École Polytechnique Fédérale de Lausanne, (EPFL) SWITZERLAND

10:10 SIZE-BASED BIOMOLECULAR SEPARATION ENABLED BY FIELD-EFFECT ELECTROOSMOSIS

Vesna Bacheva¹,², Federico Paratore¹,², Shimon Rubin¹, Govind V. Kaigala², and Moran Bercovici²
¹Technion - Israel Institute of Technology, ISRAEL and
²IBM Research – Zürich, SWITZERLAND
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Presenter(s)</th>
<th>Institution(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:30</td>
<td>DROPLET-BASED MICROFLUIDICS FOR BOTTOM-UP SYNTHETIC BIOLOGY</td>
<td>Thomas Beneyton¹, Dorothee Krafft², Celina Love², Mathias Girault¹, Claudia Bednarz², Christin Kleineberg², Christian Woelfer², Ivan Ivanov², Tanja Vidakovíc-Koch², Kai Sundmacher², T.-Y. Dora Tang¹, and Jean-Christophe Baret¹</td>
<td>University of Bordeaux, FRANCE and Max Planck Institute, GERMANY</td>
</tr>
<tr>
<td>09:50</td>
<td>CREATION OF DNA MICRODROPLETS BASED ON PHASE TRANSITION AND SEQUENCE DESIGN</td>
<td>Yusuke Sato, Tetsuro Sakamoto, and Masahiro Takinoue</td>
<td>Tokyo Institute of Technology, JAPAN</td>
</tr>
<tr>
<td>10:10</td>
<td>A VERSATILE AND ROBUST DROPLET-BASED MICROFLUIDIC AUTOMATION SYSTEM FOR HIGH-THROUGHPUT OPTIMIZATION OF BIOSYNTHETIC PATHWAYS</td>
<td>Kosuke Iwai¹,², Maren Wehrs¹, Peter W. Kim¹,², Jess Sustarich¹,², Trent R. Northen¹,³,4, Hector Garcia Martín³,², Paul D. Adams³,⁴, and Anup K. Singh¹,²</td>
<td>Joint BioEnergy Institute, USA, Sandia National Laboratories, USA, Lawrence Berkeley National Laboratory, USA, DOE Joint Genome Institute, USA, and University of California, Berkeley, USA</td>
</tr>
<tr>
<td>10:30</td>
<td>Speaker Corner (see page 7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:30</td>
<td>Break: Exhibit and Poster Inspection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td>PRECIENT: A PLATFORM FOR THE RAPID EVALUATION OF SINGLE CELL PRODUCED ANTIBODY SUCCESS USING INTEGRATED MICROFLUIDIC-ENABLED TECHNOLOGY</td>
<td>Jose A. Wippold¹, Han Wang¹,², Joseph Tingling³, Julian Leibowitz³, Paul Defqiireddo³, and Arum Han</td>
<td>Texas A&M University, USA and Tsinghua University, CHINA</td>
</tr>
<tr>
<td>11:20</td>
<td>METABOLIC CHARACTERIZATION OF INDIVIDUAL IGG-SECRETING CELLS</td>
<td>Mira ElKhoury¹, Guilhem Cheron¹, Andrew D. Griffiths¹, Jean Baudry¹, and Klaus Eyer¹,²</td>
<td>École Supérieure de Physique et de Chimie Industrielles (ESPCI), FRANCE and ETH Zürich, SWITZERLAND</td>
</tr>
<tr>
<td>11:40</td>
<td>SYNCHRONIZED DROP-SCREENING/SORTING FOR SINGLE CELL SECRETION MEASUREMENTS</td>
<td>Guoyun Sun, Ming Wang, and Chia-Hung Chen</td>
<td>National University of Singapore, SINGAPORE</td>
</tr>
<tr>
<td>12:00</td>
<td>DEMOCRATIZED HIGH-THROUGHPUT SINGLE-CELL SECRETION SCREENING USING DROPLETS FORMED BY STRUCTURED MICROPARTICLES</td>
<td>Joseph de Rutte, Robert Dimatteo, Mark van Zee, Robert Damoiseaux, and Dino Di Carlo</td>
<td>University of California, Los Angeles, USA</td>
</tr>
</tbody>
</table>
MONDAY PROGRAM

Session 1B2 - Reconfigurable and Self-Powered Devices
Chair: Sally Peyman, University of Leeds, UK

Singapore Room

11:00 RECONFIGURABLE MICROFLUIDICS: REAL-TIME SHAPING OF VIRTUAL CHANNELS THROUGH HYDRODYNAMIC FORCES
David Taylor1,2 and Govind Kaigala2
1École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND and 2IBM Research – Zürich, SWITZERLAND

11:20 LIQUID CIRCUITS IMPLEMENTED USING SMARTPHONE-CONTROLLED VALVES AND SELF-VENTED CHANNELS
Yuksel Temiz, Yulieth Arango, Onur Gökçe, and Emmanuel Delamarche
IBM Research – Zürich, SWITZERLAND

11:40 DNA-ONLY BIOASSAY FOR SIMULTANEOUS DETECTION OF PROTEIN AND NUCLEIC ACID TARGETS ON THE SELF-POWERED ISIMPLE CHIP
Aida Montserrat, Saba Safdar, Karen Ven, Francesco Dal Dosso, Jeroen Lammertyn, and Dragana Spasic
KU Leuven, BELGIUM

12:00 SINGLE LAYER DOMINO CAPILLARICS FOR PERFORMING ADVANCED AUTONOMOUS BIOASSAYS
Mohamed Yafia, Andy Ng, Oriol Ymbern, and David Juncker
McGill University, CANADA

Sydney Room

11:00 DROPLET-BASED SINGLE EXTRACELLULAR VESICLE PROTEIN PROFILING FOR THE IMPROVEMENT OF IMMUNOTHERAPY
Jina Ko1, Yongcheng Wang2, Angela Marquad1, Jonathan Carson1, David Weitz2, and Ralph Weissleder1
1Massachusetts General Hospital, USA and 2Harvard University, USA

11:20 DROPLET-BASED INVESTIGATION OF A BIOCHEMICAL BISTABLE CIRCUIT FOR SENSITIVE AND NOISE-FREE DETECTION OF NUCLEIC ACIDS
Robin Deteix1, Nicolas Lobato-Dauzier1, Elia Henry2, Shu Okumura1, Guillaume Gines2, Yannick Rondelez2, Teruo Fujii3, and Anthony J. Genot4
1University of Tokyo, JAPAN, 2François Jacob Institute of Biology-INSERM/CEA, FRANCE, 3PSL Research University, FRANCE, and 4LIMMS-IIS/CNRS, JAPAN

11:40 IN-DROPLET SEPARATION OF PROTEINS AND NUCLEIC ACIDS
Mario A. Saucedo-Espinosa, Elisabeth F. Hirth, and Petra S. Dittrich
ETH Zürich, SWITZERLAND

12:00 ELECTROPHYSIOLOGICAL ANALYSIS OF Aß42 IN PLANAR LIPID BILAYER IMITATING NERVOUS CELL-MEMBRANE
Yuri Numaguchi, Keisuke Shimizu, Kaori Tsukakoshi, Kazunori Ikebukuro, and Ryuji Kawano
Tokyo University of Agriculture and Technology, JAPAN

12:20 Grab ‘n Go Lunch

13:10 Analytical Chemistry – Young Innovator Award Presentation
Award Recipient: Keisuke Goda, University of Tokyo, JAPAN
13:15 INTELLIGENT IMAGE-ACTIVATED CELL SORTING & BEYOND
Keisuke Goda1,2,3
1University of Tokyo, Tokyo, JAPAN, 2Wuhan University, CHINA, and 3University of California, Los Angeles, USA

14:00 Poster Session 1 and Exhibit Inspection
Ground Floor and First Floor
Poster presentations are listed by topic category with their assigned number starting on page 40.

16:00 Break

16:30 Keynote Presentation
CHARACTERIZATION OF OPTIMAL CULTURE CONDITIONS FOR MICROFLUIDIC 3D VASCULARITY-ON-CHIP
Sin Yen Tan and Angela R. Wu
Hong Kong University of Science and Technology, HONG KONG

17:00 MICROFLUIDIC MONITORING HOST-VIRAL INTERACTION AT THE SINGLE-CELL LEVEL
Reya Ganguly1, Solib Kang1, Byungjin Lee1, Si Hyung Jin1, Yohei Yamuchi2, Jaeseong Kim1, and Chang-Soo Lee1
1Chungnam National University, KOREA and 2University of Bristol, UK

17:20 ONE CELL, ONE DROP, ONE CLICK: HYBRID MICROFLUIDIC MAMMALIAN SINGLE-CELL ENGINEERING
Kenza Samlali, Fatemeh Ahmadi, Angela B.V. Quach, Guy Soffer, and Steve C.C. Shih
Concordia University, CANADA

17:40 ISOLATION OF CIRCULATING FETAL TROPHOBLAST USING FETAL-CHIP FOR NON-INVASIVE PRENATAL DIAGNOSIS
Huimin Zhang1, Yuan yuan Yang2, Zhi Zhu2, and Chaoyong Yang1,2
1Shanghai Jiao Tong University School of Medicine, CHINA and 2Xiamen University, CHINA
Session 1B3 - Organs on Chip
Chair: Noo Li Jeon, Seoul National University, KOREA

Singapore Room

16:30 **Keynote Presentation**
ADVANCED CELL MODELS, ORGANS ON CHIPS & MICROPHYSIOLOGICAL SYSTEMS AS INNOVATIVE TOOLS TO SUPPORT DRUG DEVELOPMENT
Adian Roth
Roche Innovation Center, Basel, SWITZERLAND

17:00 ASSESSING GUT MICROBIOME-LIVER CROSSALK WITH A MODULAR MICROFLUIDIC PLATFORM
Hsih-Yin Tan, Louis Jun Ye Ong, Chak Ming Leung, Lor Huai Chong, and Yi-Chin Toh
National University of Singapore, SINGAPORE

17:20 NANOFABRICATED BONE-ON-CHIP: TOWARDS A BONE REGENERATION MODEL
Víctor P. Galván1, David Barata1, Athanasia Zampouka1, Jiaping Li1, Bernhard Hesse2, Marc Bohner3, and Pamela Habibovic1
1Maastricht University, THE NETHERLANDS, 2European Synchrotron Radiation Facility, FRANCE, and 3RMS Foundation, SWITZERLAND

17:40 INTEGRATION OF EX-VIVO PRECISION-CUT LIVER SLICE (PCLS) CULTURE WITH MICROFLUIDIC NMR METABOLICOMICS
Bishnubrata Patra1, Manvendra Sharma1, Ruby Karsten2, Maciej Grajewski2, Sabeth Verpoorte2, and Marcel Utz1
1University of Southampton, UK and 2University of Groningen, THE NETHERLANDS

Session 1C3 - Genetic Engineering
Chair: Hang Lu, Georgia Institute of Technology, USA

Sydney Room

16:30 **Keynote Presentation**
TRANSCRIPTIONAL RECORDING BY CRISPR SPACER ACQUISITION FROM RNA
Randall J. Platt, Michal Okoniewski, Tanmay Tanna, Mariia Y. Cherepkoka, and Florian Schmidt
ETH Zürich, SWITZERLAND

17:00 SPATIALLY-RESOLVED AND MULTIPLEX MICRORNA QUANTIFICATION FROM FORMALIN-FIXED, PARAFFIN-EMBEDDED TISSUE USING NANOLITER WELL ARRAYS
Maxwell B. Nagarajan1, Augusto M. Tentori1, Wen Cai Zhang2, Frank J. Slack2, and Patrick S. Doyle3
1Massachusetts Institute of Technology, USA and 2Beth Israel Deaconess Medical Center, USA

17:20 MICRORNA DIAGNOSTICS ON AN ELECTROCHEMICAL BIOSENSOR VIA CRISPR/CAS13A TECHNOLOGY
Richard Bruch, Julia Baaske, Claire Chatelle, Wilfried Weber, Gerald A. Urban, and Can Dincer
University of Freiburg, GERMANY

17:40 GENE EXPRESSION BASED DRUG SCREENING PLATFORM
Sumin Lee, Seo Woo Song, Junhoi Kim, and Sunghoon Kwon
Seoul National University, KOREA

18:00 - 19:30 MicroTAS Student Mixer

18:00 Women’s Faculty Event
WHY USE FLUIGENT’S MICROFLUIDIC CONTROLLERS?

PRESSURE-BASED FLOW CONTROL

Reliable results
- Pulseless and stable flow
- Fastest response time
- Best precision

Easy to use
- Plug and play solutions
- Intuitive software
- Adaptable and upgradable

ONLY STAND-ALONE PRESSURE CONTROLLER

STABLE PULSE FREE FLOW

FOR MORE INFORMATION OR A LIVE DEMONSTRATION COME AND VISIT US ON OUR BOOTH #51-52

30 YEARS ANNIVERSARY
Microsynth

Benefit from our 30 years of experience in molecular biology.

DNA/RNA Oligonucleotide Synthesis - Sanger Sequencing - Next Generation Sequencing - Contract Research and Outsourcing
Lab on a Chip activities at MicroTAS 2019

Don’t miss out:
Pioneers of Miniaturization lecture
Hang Lu Georgia Tech, USA
13:55-14:15, Wed 30 October

Art in Science competition award (booth 63)
14:30-14:45, Wed 30 October

The Widmer poster prize announcement
12:45-12:55, Thurs 31 October

Join us at booth 63

Explore our analytical portfolio
rsc.li/Analyticalportfolio

Registered charity number: 207890
TUESDAY AT A GLANCE

08:15 - 08:30 Announcements

08:30 - 09:15 PLENARY PRESENTATION III
Stefan W. Hell – Max Planck Institute for Biophysical Chemistry Göttingen, GERMANY

09:15 - 09:30 Transition

09:30 - 10:50
SESSION 2A1 Exosomes and Extracellular Vesicles
SESSION 2B1 Paper Microfluidics and Devices
SESSION 2C1 Microfluidic Culture for Cells, Organisms and Plants

10:50 - 11:20 Break: Exhibit and Poster Inspection

11:20 - 12:20 Industrial Forum Session

12:20 - 12:35 MicroTAS 2020 Announcement

12:35 - 14:00 Grab ‘n Go Lunch

12:40 - 14:00 Industrial Stage 1 (Singapore Room)
Fluigent, microfluidic ChipShop GmbH, CETONI GmbH, EVG Group (EVG)

14:00 - 16:30 Poster Session 2 and Exhibit Inspection

16:00 - 16:30 Break

16:30 - 18:00
SESSION 2A3 Circulating Tumor Cells and Cancer Therapy
SESSION 2B3 Immunoassays and Point-of-Care Devices
SESSION 2C3 Nanochannels

KEYNOTE PRESENTATION Catherine Alix-Panabières
KEYNOTE PRESENTATION Dhananjaya Dendukuri
KEYNOTE PRESENTATION David Sinton

TUESDAY, 29 OCTOBER

08:15 Announcements

PLENARY PRESENTATION III
Chair: Petra S. Dittrich, ETH Zürich, SWITZERLAND

San Francisco Room

08:30 MINFLUX NANOSCOPY: SUPERRESOLUTION POST NOBEL
Stefan W. Hell
Max Planck Institute for Biophysical Chemistry Göttingen, GERMANY
Max Planck Institute for Medical Research, GERMANY

09:15 Transition
San Francisco Room

09:30 IDENTIFYING EXTRACELLULAR VESICLE POPULATIONS FROM LONG-TERM CULTURED SINGLE CELLS USING MULTI-COLOR TIRFM
Jonas Nikoloff, Lucas Armbricht, André Kling, and Petra S. Dittrich
ETH Zürich, SWITZERLAND

09:50 PLATELET MEMBRANE CLOCKED SURFACE FOR PLASMONIC SWITCH ON BINDING OF CANCER THREATS
Sumit Kumar, Jae-A Han, Issac J. Michael, and Yoon-Kyoung Cho
Ulsan National Institute of Science and Technology (UNIST), KOREA

10:10 NODE-PORE SENSING DEVICE TO DETECT TUMOR-DERIVED EXTRACELLULAR VESICLES
Thomas R. Carey, Jennifer Hall, and Lydia L. Sohn
University of California, Berkeley, USA

10:30 HIGHLY SENSITIVE DETECTION OF TUMOR-DERIVED EXTRACELLULAR VESICLES USING AN ENZYMIC ASSAY AND REDOX CYCLING
Dilu G. Mathew¹, Pepijn Beekman¹,², Serge G. Lemay¹, Séverine Le Gac¹, and Wilfred G. van der Wiel¹
¹University of Twente, THE NETHERLANDS and ²Wageningen University, THE NETHERLANDS

Singapore Room

09:30 CITIZEN LED SAMPLING TO MONITOR PHOSPHATES IN RIVER WATER USING SIMPLE PAPER MICROFLUIDIC DEVICES
Samantha Richardson, Alexander Iles, Jeanette M. Rotchell, Mark Lorch, and Nicole Pamme
University of Hull, UK

09:50 VERSATILE PRINTED MICROHEATERS TO ENABLE LOW-POWER THERMAL CONTROL IN PAPER DIAGNOSTICS
Kristin M. Byers, Li-Kai Lin, Taylor J. Moehling, Lia A. Stanciu, and Jacqueline C. Linnes
Purdue University, USA

10:10 AN ALL-IN-ONE PAPER-BASED MICROFLUIDIC DEVICE FOR MULTIPLEXED DETECTION OF CARDIAC PROTEIN MARKERS
Hao Fu¹,², Xiao Li²,³, Zhen Qin¹, and Xinyu Liu¹,²
¹University of Toronto, CANADA, ²McGill University, CANADA, and ³Stanford University, USA

10:30 MICRO TOTAL ANALYSIS SYSTEM FOR DETERMINATION OF LITHIUM ION IN HUMAN WHOLE BLOOD WITH HYBRID DEVICE OF DMF AND TINY PAPER SENSORS
Takeshi Komatsu¹, Manabu Tokeshi¹, and Shih-Kang Fan²
¹Hokkaido University, JAPAN and ²National Taiwan University, TAIWAN
09:30 STANDARDIZED, MODULAR MICROFLUIDIC BUILDING BLOCKS FOR AUTOMATED CELL CULTURING SYSTEMS
Anke Vollertsen, Elsbeth Bossink, Dean de Boer, Jet Spalink, Robert Passier, Albert van den Berg, Loes Segerink, Andries van der Meer, and Mathieu Odijk
University of Twente, THE NETHERLANDS

09:50 INTEGRATED MICROFLUIDIC CHIP WITH FLOWING UPSTREAM SPERM SORTING AND ZP REMOVED OOCYTE INCUBATION FOR IN-VITRO FERTILIZATION
Suei-Shen Wang¹, Yung-Chin Tzeng¹, Yueh-Jen Chen¹, Li-Chen Pan², and Fan-Gang Tseng³\(^1^,³\)
¹National Tsing Hua University, TAIWAN, ²Taipei Medical University, TAIWAN, and ³Research Center for Applied Sciences, TAIWAN

10:10 DROPLET LIQUID EXCHANGER FOR CHEMICAL SCREENS IN CAENORHABDITIS ELEGANS
Guillaume Aubry, Marija Milisavljevic, and Hang Lu
Georgia Institute of Technology, USA

10:30 NOVEL MICRO-FLUIDIC CIRCUIT MODEL OF PLANT VASCULAR SYSTEM FOR THE GROWTH NAVIGATION
Ryo Miyake¹, Toshihiro Kasama¹, Maia Godonoga¹, Yoshishige Endo¹, Takumi Okamoto², Tetsushi Koide², Chiharu Sone², Masashi Komine³, Yukio Yaji³, Yoshihiro Kaneta³, and Atsushi Ogawa³
¹University of Tokyo, JAPAN, ²Hiroshima University, JAPAN, and ³Akita Prefectural University, JAPAN

11:20 HOW TO BRING RESEARCH FROM THE BENCH TO THE BEDSIDE, AND ALSO TO UNDERSTAND PITFALLS AND HOW TECHNOLOGY NEEDS TO MAP INTO THE REALITY
Panel: Vincent Linder BioMedical Consultant, PORTUGAL
Martin Kopp Roche Diagnostics, SWITZERLAND
Oliver Nolte Center for Laboratory Medicine, SWITZERLAND
Xavier Ding FIND, SWITZERLAND

12:20 MicroTAS 2020 Announcement

12:35 Grab ‘n Go Lunch
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Speaker(s)</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:40</td>
<td>1a – NEW APPLICATIONS IN PRESSURE CONTROL AND DROPLET GENERATION IN MICROFLUIDICS</td>
<td>France Hamber</td>
<td>Fluigent, FRANCE</td>
</tr>
<tr>
<td>13:00</td>
<td>1b – THE ROLE OF VALRYIAN KORZION ISSE MICROFLUIDICS – THE USEFULNESS OF VALRYIAN STEEL FOR MICROFLUIDICS</td>
<td>Holger Becker</td>
<td>microfluidic ChipShop GmbH, GERMANY</td>
</tr>
<tr>
<td>13:20</td>
<td>1c – THE TASTE OF PRECISION</td>
<td>Melanie Büttner</td>
<td>CETONI GmbH, GERMANY</td>
</tr>
<tr>
<td>13:40</td>
<td>1d – INTEGRATION TECHNOLOGIES FOR NEXT-GENERATION MICROFLUIDIC DEVICES</td>
<td>Bernd Dielacher</td>
<td>EVG Group (EVG)</td>
</tr>
<tr>
<td>14:00</td>
<td>Poster Session 2 and Exhibit Inspection</td>
<td></td>
<td>Ground Floor and First Floor</td>
</tr>
<tr>
<td>16:00</td>
<td>Break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:30</td>
<td>Keynote Presentation</td>
<td>Catherine Alix-Panabieres</td>
<td>University Medical Center of Montpellier, FRANCE</td>
</tr>
<tr>
<td>17:00</td>
<td>MICROFLUIDIC 3D CELL SIEVING FOR CLOGGING-FREE RARE CELL ENRICHMENT WITH HIGH-THROUGHPUT AND LARGE VOLUME</td>
<td>Jie Cheng1,2, Yiran Zhang1, Yifei Ye1,2, Xizhao Sui1, Mingxiao Li2, Wenjie Zhao1,2, Xinyu Wei2, Hongyan Guo3, Yang Zhao2, and Chengjun Huang1,2</td>
<td>Chinese Academy of Sciences, CHINA, National Engineering Research Center for Beijing Biochip Technology, CHINA, and Peking University People’s Hospital, CHINA</td>
</tr>
<tr>
<td>17:20</td>
<td>MICROFLUIDIC ISOLATION OF METABOLICALLY ACTIVE CIRCULATING TUMOR CELLS AND CIRCULATING STROMAL CELLS</td>
<td>Kinga Matula1, Francesca Rivello1, Alqara Pirusa1, Minke Smits2, Niven Mehra2, and Wilhelm T.S. Huck1</td>
<td>Radboud University, THE NETHERLANDS and Radboud Institute of Molecular Life Sciences, THE NETHERLANDS</td>
</tr>
<tr>
<td>17:40</td>
<td>AUTOMATION & INTEGRATION OF COMPUTER VISION ANALYSIS FOR IMMUNOTHERAPY RESEARCH WITH ON-CHIP CELL TRAPPING</td>
<td>Chris Tostado1, Joel Heng2, Lucas Ong1, Joel Voldman3, Ramanuj DasGupta2, and Yi-Chin Toh1</td>
<td>National University of Singapore, SINGAPORE, Genomic Institute of Singapore, SINGAPORE, and Massachusetts Institute of Technology, USA</td>
</tr>
</tbody>
</table>
Keynote Presentation
A POINT-OF-CARE IMMUNOASSAY PLATFORM FOR THYROID FUNCTION BASED ON HYDROGEL SENSORS EMBEDDED INSIDE A MICROFLUIDIC DEVICE
Jayeeta Pai, Mithila Azad, Bhavna Goyal, Rajiv Nair, Rakesh Sharma, and Dhananjaya Dendukuri
Achira Labs, INDIA

MICROGEL TEMPLATED DROPLET ELISA
Vishwesh Shah, Yilian Wang, Joseph de Rutte, Chueh-Yu Wu, and Dino Di Carlo
University of California, Los Angeles, USA

HIGHLY MULTIPLEXED DIGITAL ASSAYS VIA PHASE-CHANGING HYDROGEL BARCODE PARTICLES
Luis F. Alonzo, Samantha A. Byrnes, Priscilla Delgado, Toan Huynh, Bernhard H. Weigl, and Kevin P. Nichols
Intellectual Ventures Lab, USA

A LABEL-FREE PLASMO-FLUIDIC BIOSENSOR FOR ULTRASENSITIVE DETECTION OF VIRAL DISEASES
Xiangchao Zhu, Mustafa Mutlu, and Ahmet Ali Yanik
University of California, Santa Cruz, USA

Keynote Presentation
NANOFLUIDICS FOR ENERGY AND ENVIRONMENTAL APPLICATIONS
David Sinton
University of Toronto, CANADA

NANOFLUIDIC ENZYME REACTOR EXCEEDING LIMIT OF BULK REACTION RATE
Koki Yamamoto¹, Kyojiro Morikawa¹, Koreyoshi Imamura², Hiroyuki Imanaka², and Takehiko Kitamori¹
¹University of Tokyo, JAPAN and ²Okayama University, JAPAN

A NANOFLUIDIC MEMRISTOR BASED ON ION CONCENTRATION POLARIZATION
Yang Bu, Zisun Ahmed, and Levent Yobas
Hong Kong University of Science and Technology, HONG KONG

NANOFLUIDIC FABRICATION AND MANIPULATION OF ATTOLITER DROPLETS
Hiroto Kawagishi¹, Shuichi Kawamata¹, and Yan Xu²
¹Osaka Prefecture University, JAPAN and ²Japan Science and Technology Agency (JST), JAPAN

Adjourn for the Day
FluoSurf
by emulse

High-performance fluorinated surfactant

Specifically designed to stabilize emulsion in microfluidics, FluoSurf helps to generate droplets for biotechnological applications such as qPCR, screening, single-cell analysis, diagnostics.

FluoSurf is biocompatible, stable, reproducible from batch to batch, leak-proof and with a high purity.

FluoSurf is available neat or diluted in fluorinated solvent.
WEDNESDAY AT A GLANCE

08:15 - 08:30 Announcements

08:30 - 09:15 PLENARY PRESENTATION IV
Peng Yin
Harvard University, Boston, USA

09:15 - 09:30 Transition

09:30 - 10:30 SESSION 3A1
Detection and Analysis of Pathogens
SESSION 3B1
Devices for Detection and Imaging
SESSION 3C1
Surface Patterning

10:30 - 11:00 Break: Exhibit and Poster Inspection

11:00 - 12:20 SESSION 3A2
Blood Cell and Blood Flow Analysis
SESSION 3B2
3D Writing and Printing
SESSION 3C2
Active Particles and Particle Assemblies

12:20 - 13:10 Grab ‘n Go Lunch

12:25 - 13:05 Industrial Stage 2 (Singapore Room)
SCHOTT NEXTERION®, PreSens Precision Sensing GmbH

13:10 - 13:55 PLENARY PRESENTATION V
Zulfiqar A. Bhutta
Hospital for Sick Children, Toronto, CANADA

13:55 - 14:15 Lab on a Chip and Dolomite – Pioneers in Miniaturization
Lectureship Prize and Presentation

14:15 - 16:45 Poster Session 3 and Exhibit Inspection

14:30 - 14:45 NIST and Lab on a Chip - Art in Science Award
(in Royal Society of Chemistry Booth Number 63, First Floor)

14:15 - 16:45 Break

16:45 - 18:15 SESSION 3A3
Spheroids and Organoids
SESSION 3B3
Manipulation of Cells
SESSION 3C3
Nanopores and Nanochannels

KEYNOTE PRESENTATION
Jianhua Qin

KEYNOTE PRESENTATION
Cullen R. Buie

KEYNOTE PRESENTATION
Sumita Pennathur

19:00 - 23:00 Conference Banquet

WEDNESDAY, 30 OCTOBER

08:15 Announcements

PLENARY PRESENTATION IV
Chair: Nicole Pamme, University of Hull, UK
San Francisco Room

08:30 ENGINEERING DNA DEVICES TO ADVANCE BIOIMAGING AND BIOSENSING
Peng Yin
Harvard University, Boston, USA

09:15 Transition
WEDNESDAY PROGRAM

Session 3A1 - Detection and Analysis of Pathogens
Chair: Jacqueline Linnes, Purdue University, USA

San Francisco Room

09:30 MULTIPLEX DROPLET PLATFORM FOR RAPID SINGLE-CELL ANTIBIÓGRAM
Pengfei Zhang, Aniruddha Kaushik, Kuangwen Hsieh, and Tza-Huei Wang
Johns Hopkins University, USA

09:50 EMBRACING CHAOS – A SIMPLIFIED PLATFORM FOR MULTIPLEXING DIGITAL ASSAYS IN POLYDISPERSE DROPLETS
Samantha A. Byrne, Tim Chang, Toan Huynh, Luis Alonzo, Caitlin E. Anderson, Lex Ball, Anna Astashkina, Jim McDermott, John Connelly, Bernhard H. Weigl, and Kevin P. Nichols
Intellectual Ventures Laboratory, USA

10:10 MICROFLUIDIC PCR-BASED DETECTION OF SUB-ATTOMOL PATHOGENIC DNA IN URINE USING HIERARCHICAL SELECTIVE ELECTROKINETIC PRECONCENTRATION
Wei Ouyang and Jongyoon Han
Massachusetts Institute of Technology, USA

Singapore Room

09:30 ELECTRICAL DETECTION OF PATHOGENS BEYOND THE LIMITATION OF DEBYE SCREENING USING GRAPHENE FIELD-EFFECT TRANSISTORS IN MICRODROPLETS
Takao Ono1, Yasushi Kanai1, Koichi Inoue1, Yohei Watanabe2, Shin-ichi Nakakita3, Toshio Kawahara4, Yasuo Suzuki4, and Kazuhiro Matsumoto1
1 Osaka University, JAPAN, 2 Kyoto Prefectural University of Medicine, JAPAN, 3 Kagawa University, JAPAN, and 4 Chubu University, JAPAN

09:50 MINIMAL INSTRUMENT IMMUNOASSAY SYSTEM BY CARTRIDGE-INTEGRATED INKJET PRINTED OPTICAL DETECTION SYSTEM
Sebastian Schattenschneider1, Falk Kemper2, Erik Beckert2, Peter Miethe3, Andreas Willems4, Holger Becker4, and Claudia Gärtner1
1 microfluidic ChipShop, GERMANY, 2 Fraunhofer IOF, GERMANY, 3 fzm GmbH, GERMANY, and 4 inno-train Diagnostik GmbH, GERMANY

10:10 MICROFLUIDIC DEVICE FOR BIOLOGICAL SAMPLES IMAGING WITH USE OF A MINIATURE MEMS TRANSMISSION ELECTRON MICROSCOPE
Michal Krysztof, Marcin Biaas, and Anna Górecka-Drzazga
Wrocław University of Science and Technology, POLAND
09:30 PIXELATED CHEMICAL DISPLAY: TOWARDS MASSIVELY PARALLEL DYNAMIC SURFACE PROCESSING
Pierre-Alexandre Goyette1, Dina Dorrigiv1,2, Maude Tremblay1, Kayla Simeone1,2, and Thomas Gervais1,2
1 Polytechnique Montréal, CANADA, 2 Institut du Cancer de Montréal, CANADA, and 3 Université de Montréal, CANADA

09:50 FACILE ASSEMBLY OF LARGE AREA CELL ARRAYS USING PATTERNED ELASTOMERIC SURFACES
Karla Perez-Toralla, Angel Olivera-Torres, Mark Rose, Ruiguo Yang, and Stephen Morin
University of Nebraska, USA

10:10 ELECTROKINETIC SCANNING PROBE FOR LOCALIZED SURFACE PATTERNING AND ANALYSIS
Nadya Ostromohov1,2, Baruch Rofman1, Moran Bercovici1, and Govind V. Kaigala2
1IBM Research – Zürich, SWITZERLAND and 2Technion-Israel Institute of Technology, ISRAEL

10:30 Speaker Corner (see page 7)

10:30 Break: Exhibit and Poster Inspection

Session 3A2 - Blood Cell and Blood Flow Analysis
Chair: Kae Sato, Japan Women’s University, JAPAN

11:00 DEFORMABILITY BASED CELL SORTING ENABLING QUALITY CONTROL OF STORED RED BLOOD CELLS
Emel Islamzada1,2, Kerryn Matthews1, Quan Guo1, Aline T. Santosou1, Mark D. Scott1,2, and Hongshen Ma1,3
1 University of British Columbia, CANADA, 2 Canadian Blood Services, CANADA, and 3 Vancouver General Hospital, CANADA

11:20 PLASMA GENERATION AND LABEL-FREE MONONUCLEAR CELL SEPARATION FROM WHOLE BLOOD BY ONE-STEP ACOUSTIC FOCUSING
Julia Alsved1, Anke Urbansky2, Pelle Ohlsson1, Klara Petersson1, Erling Nielsen1, Agnes Michanek1, and Per Augustsson2
1AcouSort AB, SWEDEN and 2Lund University, SWEDEN

11:40 FULLY AUTOMATED LAB-ON-A-DISC FOR LABEL-FREE ENRICHMENT OF HIGHLY PURE PLATELETS FROM WHOLE BLOOD
Chi-Ju Kim1,2, Dong Yeob Ki2, Juhee Park2, Vijaya Sunkara2, and Yoon-Kyong Cho1,2
1Ulsan National Institute of Science and Technology (UNIST), KOREA and 2Institute for Basic Science (IBS), KOREA

12:00 ARTIFICIAL MICROCIRCULATION REPLICAS USING BACKSIDE LITHOGRAPHY FOR BLOOD FLOW ANALYSIS
Marianne Fenech1,2, Vincent Giord2, Viviana Claveria3, Sebastien Meance3, Manouk Abkarian3, and Benoit Charlot3
1University of Ottawa, CANADA and 2University of Montpellier, FRANCE
Singapore Room

11:00 DIRECT LASER WRITING OF THREE-DIMENSIONAL GRAPHENE-LADEN MICROSTRUCTURES INSIDE ENCLOSED MICROFLUIDIC CHANNELS
Michael A. Restaino¹,², Noah Eckman¹, Abdullah T. Alsharhan¹, Andrew C. Lamont¹, Asha J. Hall², and Ryan D. Sochol¹
¹University of Maryland, USA and ²Army Research Laboratory, USA

11:20 OPTO-FLUIDIC 3D PRINTING PLATFORM FOR CELL MICRO-ENVIRONMENT AND TISSUE ENGINEERING
Sandrine Assié-Souleille, Julie Foncy, Victor Fournié, Godefroi Saint Martin, Rémi Courson, Louisa Boyer, Justine Creff, Arnaud Besson, Xavier Dollat, Julien Roul, Emmanuelle Trévisiol, and Laurent Malaquins
Université de Toulouse, FRANCE

11:40 MICRO-3D PRINTED NOZZLES AND MIXERS FOR TIME-RESOLVED STRUCTURAL BIOLOGY
Juraj Kosa and Michael Heymann²
¹CFEL, GERMANY and ²MPI of Biochemistry, GERMANY

12:00 NEW 4D PRINTING USING DRY-ERASE MARKER
Seo Woo Song¹, Sumin Lee¹, Jun Kyu Choe², Junwon Kang¹, Jiyun Kim², and Sunghoon Kwon¹
¹Seoul National University, KOREA and ²Ulsan National Institute of Science and Technology (UNIST), KOREA

Sydney Room

11:00 MICROFLUIDIC FABRICATION OF HIERARCHICAL PHOTONIC CRYSTAL MICROSPHERES AND THEIR APPLICATIONS
Juan Wang¹,², Hai Le-The², Lingling Shui¹, Johan G. Bomer², Loes I. Segerink², and Jan Eijkel²
¹South China Normal University, CHINA and ²University of Twente, THE NETHERLANDS

11:20 FABRICATION OF A POROUS MICROPARTICLE WHOSE TRANSPARENCY CHANGE ACCORDING TO THE SURROUNDING ENVIRONMENT
Kibeom Kim and Wook Park
Kyung Hee University, KOREA

11:40 ACTIVE PARTICLES AS MOBILE MICROELECTRODES FOR UNIFIED, DIRECTED AND LABEL-FREE CARGO TRANSPORT AND DELIVERY
Xiaoye Huo, Yue Wu, Sinwook Park, Alicia Boymelgreen, and Gilad Yossifon
Technion - Israel Institute of Technology, ISRAEL

12:00 LIGHT-DRIVEN MICRO-ROBOT FOR MICRO-PARTICLE AND CELL MANIPULATION
Shuailong Zhang¹, Erica Scott¹, Nika Shakiba¹, Peter W. Zandstra¹ ², and Aaron R. Wheeler¹
¹University of Toronto, CANADA and ²University of British Columbia, CANADA

12:20 Grab ‘n Go Lunch
12:25 2a – DIAGNOSTIC CONSUMABLES: WHERE IS THIS CHALLENGING MARKET HEADED?
James Downs
SCHOTT NEXTERION®, GERMANY

12:45 2b – SENSORS FOR ONLINE MONITORING OF O₂, PH AND CO₂ IN MICROFLUIDICS
Daniela Obermaier
PreSens Precision Sensing GmbH, GERMANY

PLENARY PRESENTATION V
Chair: Emmanuel Delamarche, IBM Research – Zürich, SWITZERLAND

13:10 ADDRESSING NEWBORN SURVIVAL GLOBALLY: THE ROLE OF INNOVATIONS IN MOVING FROM POLICY TO ACTION
Zulfiqar A. Bhutta¹,²
¹Hospital for Sick Children, Toronto, CANADA and
²Aga Khan University, PAKISTAN

13:55 Lab on a Chip and Dolomite – Pioneers in Miniaturization
Lectureship Prize and Presentation
Prize Recipient: Hang Lu, Georgia Institute of Technology, USA

14:15 Speaker Corner (see page 7)

14:15 Poster Session 3 and Exhibit Inspection
Ground Floor and First Floor
Poster presentations are listed by topic category with their assigned number starting on page 40.

14:30 NIST and Lab on a Chip - Art in Science Award
(in Royal Society of Chemistry Booth Number 63)

16:15 Break
Session 3A3 - Spheroids and Organoids
Chair: Olivier Frey, InSphero AG, SWITZERLAND

San Francisco Room

16:45 **Keynote Presentation**
ORGANOIDS-ON-CHIPS TO ADVANCE HEALTH SCIENCE
Jianhua Qin
Dalian Institute of Chemical Physics, CHINA

17:15 **MULTI-STEP IMMUNOSTAINING TOOL FOR SPHEROID ARRAY USING DROPLET CONTACT-BASED SPHEROID TRANSFER**
Hwisoo Kim, Hyewon Roh, Chang Hyun Cho, and Je-Kyun Park
Korea Advanced Institute of Science and Technology (KAIST), KOREA

17:35 **OPTIMIZING CO-CULTURE MEDIUM CONDITION FOR THE INTEGRATION OF KIDNEY ORGANOID AND VASCULAR BED**
Ryu Okada, Yoshikazu Kameda, Kensuke Yabuuchi, Toshikazu Aroaka, Jun K. Yamashita, Tatsuiji Enoki, Minoru Takasato, Kenji Osatune, and Ryuji Yokokawa
1Kyoto University, JAPAN, 2RIKEN, JAPAN, and 3Takara Bio Inc., JAPAN

17:55 **BRIDGING THE GAP: A MICROFLUIDIC DEVICE FOR STUDYING ORGANOTYPIC BARRIER TISSUES**
1Colorado State University, USA and 2Applied Medical, USA

Session 3B3 - Manipulation of Cells
Chair: Ashleigh Theberge, University of Washington, USA

Singapore Room

16:45 **Keynote Presentation**
AUTOMATED MICROFLUIDIC GENETIC MANIPULATION FOR HIGH THROUGHPUT BIOLOGY
Po-Hsun Huang, Sijie Chen, and Cullen R. Buie
Massachusetts Institute of Technology, USA

17:15 **INTRACELLULAR DELIVERY OF ACTIVE BIOMOLECULES THROUGH VORTEX-INDUCED CELL DEFORMATION**
Jeongsoo Hur and Aram J. Chung
Korea University, KOREA

17:35 **DIELECTROPHORESIS REVEALS THAT BACTERIAL ELECTROPORATION CORRELATES WITH CELL POLARIZABILITY**
Qianru Wang, Sijie Chen, and Cullen R. Buie
1Stanford University, USA and 2Massachusetts Institute of Technology, USA

17:55 **VERSATILE ENGINEERING OF LYSINS: ONE DROP TO KILL**
Hans Gerstmans, Fabrice Gielens, Lorenz Van Hileghem, Rob Lavigne, Florian Hollfelder, Jeroen Lammertyn, and Yves Briers
1Ghent University, BELGIUM, 2KU Leuven, BELGIUM, 3University of Exeter, UK, and 4University of Cambridge, UK
<table>
<thead>
<tr>
<th>Time</th>
<th>Session Title</th>
<th>Presenters</th>
<th>Institutions</th>
</tr>
</thead>
</table>
| 16:45 | **Keynote Presentation** | BIPOLAR ELECTRODES FOR MICROFLUIDIC PUMPING | Alexander Eden, Farnaz Lorestani, Sean MacKenzie, Rena Yang, David Huber, Carl D. Meinhart, and Sumita Pennathur
University of California, Santa Barbara, USA |
| 17:15 | **CONTROLLING DNA FLOW IN NANOCHANNELS USING TOPOGRAPHY** | Franziška M. Esmek and Irene Fernandez-Cuesta | Hamburg University, GERMANY |
| 17:35 | **NANOPOR DECODING FOR MICRORNA PATTERN OF CANCER WITH DNA COMPUTATION** | Nanami Takeuchi, Moe Hiratani, Asuka Tada, and Ryuji Kawano | Tokyo University of Agriculture and Technology, JAPAN |
| 17:55 | **SINGLE MOLECULE ELECTRICAL IDENTIFICATION OF EPIGENETIC VARIATIONS BY NANOFUID INTEGRATED NANOGAP DEVICES** | Takahito Ohshiro, Yuuki Komoto, Masamitsu Konno, Jun Koseki, Ayumu Asai, Hideshi Ishii, and Masateru Taniguchi | Osaka University, JAPAN |

18:15 Adjourn for the Day

Conference Banquet

<table>
<thead>
<tr>
<th>Time</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>19:00</td>
<td>Join us at ZicZac to enjoy “Real Food Good Mood” with live entertainment and network with colleagues. As of the printing of this program, there are a few tickets remaining for purchase. Please visit the Onsite Conference Registration Desk for availability. Please note that transportation will not be provided by the conference. Check with your hotel front desk for directions on how to take Tram number 6 to the Morgartenring stop across from ZicZac using your BaselCard.</td>
</tr>
<tr>
<td>23:00</td>
<td></td>
</tr>
</tbody>
</table>
PRIMO
MICROFABRICATION & HYDROGEL STRUCTURATION
PRIMO contactless & maskless photopatterning allows to create custom structured substrates in 3D.

Collaboration with Physico-Chimie Curne UMR 168 and UMS-IPGG (France)
Pasturel et al., Biochips, 2018

200 μm
Décourt et al., Lab Chip, 2018

Find out more on alveolelab.com

Photron
High-speed cameras for MEMS, micro-fluidic and lab-on-a-chip applications
- MPixel resolution @ 2-20kfps
- Sub-microsecond exposure
- High light sensitivity
- Compact and light weight

FASTCAM Mini UX100 @ 10kfps

www.photron.com europe@photron.com
<table>
<thead>
<tr>
<th>Time</th>
<th>Session 4A1</th>
<th>Session 4B1</th>
<th>Session 4C1</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:45 - 10:15</td>
<td>Droplet Microfluidics Interfaced with Mass Spectrometry</td>
<td>Wearables</td>
<td>Biofibers Dynamics and Assemblies at the Microscale</td>
</tr>
<tr>
<td>Keynote</td>
<td>Detlev Belder</td>
<td>Stéphanie P. Lacour</td>
<td>Rikiya Watanabe</td>
</tr>
<tr>
<td>10:15 - 10:45</td>
<td>Break: Exhibit and Poster Inspection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:45 - 11:45</td>
<td>Analysis of Neutrophils for Diagnosis of Sepsis and Inflammation</td>
<td>Centrifugal Platforms</td>
<td>Gas Control for Cells</td>
</tr>
<tr>
<td>11:45 - 11:50</td>
<td>Transition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:50 - 12:35</td>
<td>PLENARY PRESENTATION VI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:35 - 12:45</td>
<td>CHEMINAS - Young Researcher Poster Awards</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:45 - 12:55</td>
<td>Lab on a Chip - Widmer Poster Award</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:55 - 13:05</td>
<td>IMT Masken und Teilungen AG – Microfluidics on Glass Poster Award</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:05 - 13:15</td>
<td>Sensors (MDPI) - Outstanding Sensors and Actuators, Detection Technologies Poster Award</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:15</td>
<td>Closing Remarks - Conference Adjourns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Session</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08:45</td>
<td>Keynote Presentation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>INTERFACING DROPLET CHIPS TO MASS SPECTROMETRY</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Detlev Belder, Leipzig University, GERMANY</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HIGH-THROUGHPUT X-RAY CRYSTALLOGRAPHY BASED ON THE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PROTEIN CRYSTAL ARRAY</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reo Takeda¹, Masatoshi Maeki¹, Sho Ito², Go Ueno²,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kunio Hirata², Akihiko Ishida¹, Hirofumi Tani¹,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Masaki Yamamoto¹, and Manabu Tokeshi¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>¹ Hokkaido University, JAPAN, ²RIKEN, JAPAN, and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>³ University of Hyogo, JAPAN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:35</td>
<td>MASSIVE SCREENING OF METABOLITES USING PICOLITER DROPLET</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ARRAY WITH NANOSTRUCTURE-INITIATOR MASS SPECTROMETRY</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Noel S. Ha¹,², Markus de Raad¹, Fangchao Song¹, Kai Deng¹,²,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nicole Ing²,³, Anup K. Singh¹,², and Trent R. Northen¹,²,³</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>¹ Lawrence Berkeley National Laboratory, USA, ²US Department of Energy</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Joint BioEnergy Institute, USA, ³US Department of Energy Joint Genome</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Institute, USA, and ⁴Sandia National Laboratories, USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:55</td>
<td>MULTI-OMIC DIGITAL MICROFLUIDIC APPROACH TO</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHARACTERIZATION OF THE NEURAL STEM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Environment</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Erica Y. Scott, Calvin Chan, Betty Li, Harrison Edwards, Julian Lamanna,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Filip Stojic, Cindi Morshed, and Aaron Wheeler</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>University of Toronto, CANADA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Session 4B1 - Wearables

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:45</td>
<td>Keynote Presentation</td>
</tr>
<tr>
<td></td>
<td>SKIN-LIKE, MICROFABRICATED GALLIUM-BASED SENSORS FOR MOTION CAPTURE</td>
</tr>
<tr>
<td></td>
<td>Laurent Dejace, Arthur Hirsh, and Stéphanie P Lacour</td>
</tr>
<tr>
<td></td>
<td>École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND</td>
</tr>
<tr>
<td>09:15</td>
<td>ORGANIC TRANSDERMAL IONTOPHORESIS PATCH POWERED BY</td>
</tr>
<tr>
<td></td>
<td>SERIALIZED LAYER-BUILT BIOFUEL CELLS</td>
</tr>
<tr>
<td></td>
<td>Takaya Mizuno, Kaito Sato, Shinya Kusama, Shotaro Yoshida, and Matsuhiko</td>
</tr>
<tr>
<td></td>
<td>Nishizawa</td>
</tr>
<tr>
<td></td>
<td>Tohoku University, JAPAN</td>
</tr>
<tr>
<td>09:35</td>
<td>METAL WIRING ON FLEXIBLE ORIGAMI STRUCTURE FOR STABLE</td>
</tr>
<tr>
<td></td>
<td>RESISTANCE VALUE AGAINST DEFORMATION</td>
</tr>
<tr>
<td></td>
<td>Takuya Uchida¹, Hiroki Yasuaga², Eiji Iwase³, and Hiroaki Onoe¹</td>
</tr>
<tr>
<td></td>
<td>¹ Keio University, JAPAN and ²Waseda University, JAPAN</td>
</tr>
<tr>
<td>09:55</td>
<td>MEDIATOR-FREE WEARABLE ENZYMATIC SENSING TO MITIGATE</td>
</tr>
<tr>
<td></td>
<td>IONIC AND ELECTROACTIVE INTERFERENCE FOR RELIABLE</td>
</tr>
<tr>
<td></td>
<td>OPERATION IN COMPLEX BIOFLUID</td>
</tr>
<tr>
<td></td>
<td>Bo Wang, Yichao Zhao, Hannaneh Hojajii, Minsoo Kim, and Sam Emaminejad</td>
</tr>
<tr>
<td></td>
<td>University of California, Los Angeles, USA</td>
</tr>
</tbody>
</table>
Sydney Room

THURSDAY PROGRAM

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Speaker Information</th>
</tr>
</thead>
</table>
| 08:45 | **Keynote Presentation**
MICRORSYSTEMS FOR SINGLE MOLECULE ANALYSIS OF MEMBRANE PROTEINS
Rikiya Watanabe
RIKEN, JAPAN | |
| 09:15 | **INFLUENCE OF TOPOLOGICAL CONSTRAINTS ON DIFFERENTIATION AND ALIGNMENT OF MULTINUCLEATED MYOTUBES**
Ki-Young Song1,2, Jorge Correia2, Gorge L. Ruas2, and Ana I. Teixeira2
1Beijing Institute of Technology, CHINA and 2Karolinska Institutet, SWEDEN | |
| 09:35 | **ASSEMBLY OF ACTOMYOSIN BUNDLES IN MICROFLUIDIC CHANNEL**
Shusei Kawara1, Yuichi Hiratsuka2, and Hiroaki Onoe1
1Keio University, JAPAN and 2Japan Advanced Institute Science Technology (JAIST), JAPAN | |
| 09:55 | **INVESTIGATING FIBROBLAST-INDUCED COLLAGEN GEL CONTRACTION USING A DYNAMIC MICROSCALE PLATFORM**
Tianzi Zhang1, John H. Day1, Xiaojing Su1, Arturo G. Guadarrama2, Nathan K. Sandbo2, Stephane Esnault2, Loren C. Denlinger2, Erwin Berthier1, and Ashleigh B. Theberge1,3
1University of Washington, USA, 2University of Wisconsin, USA, and 3University of Wisconsin School of Medicine and Public Health, USA | |

Sydney Room

Session 4C1 - Biofibers Dynamics and Assemblies at the Microscale
Chair: Tom Robinson, Max Planck Institute of Colloids and Interfaces, GERMANY

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Speaker Information</th>
</tr>
</thead>
</table>
| 10:45 | **RAPID MONITORING OF SEPSIS BY INTEGRATION OF SPIRAL INERTIAL MICROFLUIDICS AND ISODIELECTRIC SEPARATION**
Do-Hyun Lee1, Hyungkook Jeon1, Bakr Jundi2, Rebecca M. Baron2, Bruce D. Levy2, Jongyoon Han1, and Joel Voldman1
1Massachusetts Institute of Technology, USA and 2Harvard Medical School, USA | |
| 11:05 | **EARLY SEPSIS DIAGNOSIS BY MEASURING NEUTROPHIL SPONTANEOUS MIGRATION AND RESIDUAL-PHAGOCYTOSIS USING MICROFLUIDICS**
Sinan Muldur1, Anika Marandi1, Andreu Cullere1, Jarone Lee2, Michael Filbin1, Felix Ellett1, and Daniel Irimia1
1Massachusetts General Hospital, USA, 2Harvard Medical School, USA, and 3Shriners Burns Hospital, USA | |
| 11:25 | **LABEL-FREE IMPEDANCE MAPPING OF NEUTROPHIL DYNAMIC IMMUNE RESPONSES FOR RAPID MULTI-PARAMETRIC INFLAMMATORY PROFILING**
Chayakorn Petchakup1, Sheng Yuan Leong1, Hui Min Tay1, Rinkoo Dalan2, King Ho Holden Li1, and Han Wei Hou1
1Nanyang Technological University, SINGAPORE and 2Tan Tock Seng Hospital, SINGAPORE | |

San Francisco Room

Session 4A2 - Analysis of Neutrophils for Diagnosis of Sepsis and Inflammation
Chair: Tohid Didar, McMaster University, CANADA

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Speaker Information</th>
</tr>
</thead>
</table>
| 10:45 | **RAPID MONITORING OF SEPSIS BY INTEGRATION OF SPIRAL INERTIAL MICROFLUIDICS AND ISODIELECTRIC SEPARATION**
Do-Hyun Lee1, Hyungkook Jeon1, Bakr Jundi2, Rebecca M. Baron2, Bruce D. Levy2, Jongyoon Han1, and Joel Voldman1
1Massachusetts Institute of Technology, USA and 2Harvard Medical School, USA | |
| 11:05 | **EARLY SEPSIS DIAGNOSIS BY MEASURING NEUTROPHIL SPONTANEOUS MIGRATION AND RESIDUAL-PHAGOCYTOSIS USING MICROFLUIDICS**
Sinan Muldur1, Anika Marandi1, Andreu Cullere1, Jarone Lee2, Michael Filbin1, Felix Ellett1, and Daniel Irimia1
1Massachusetts General Hospital, USA, 2Harvard Medical School, USA, and 3Shriners Burns Hospital, USA | |
| 11:25 | **LABEL-FREE IMPEDANCE MAPPING OF NEUTROPHIL DYNAMIC IMMUNE RESPONSES FOR RAPID MULTI-PARAMETRIC INFLAMMATORY PROFILING**
Chayakorn Petchakup1, Sheng Yuan Leong1, Hui Min Tay1, Rinkoo Dalan2, King Ho Holden Li1, and Han Wei Hou1
1Nanyang Technological University, SINGAPORE and 2Tan Tock Seng Hospital, SINGAPORE | |
THURSDAY PROGRAM

Session 4B2 - Centrifugal Platforms
Chair: Roland Zengerle, University of Freiburg, GERMANY

Singapore Room

10:45 MINIATURIZED ALL-IN-ONE POWERED LAB ON A DISC PLATFORM
Edwin En-Te Hwu, Marlitt Viehrig, Sriram Thoppe Rajendran,
Laura Serioli, Kinga Zór, and Anja Boisen
Technical University of Denmark, DENMARK

11:05 AUTOMATING PROTEIN IMMUNOPRECIPITATION IN CENTRIFUGAL MICROFLUIDICS
Daniel Brassard1, Jamal Daoud1, Liviu Clime1, Matthias Geissler1,
Lidija Malic1, Denis Charlebois2, and Teodor Veres1
1National Research Council, CANADA and
2Canadian Space Agency, CANADA

11:25 AUTOMATION AND INTEGRATION OF A CENTRIFUGAL MICRODEVICE FOR DNA PURIFICATION USING DYNAMIC SOLID PHASE EXTRACTION AND NOVEL LASER-ACTUATED VALVING
Leah M. Dignan1, Kimberly R. Jackson1, M. Shane Woolf1,
Christopher J. Tomley1, and James P. Landers1,2
1University of Virginia, USA and 2MicroLab Inc., USA

Session 4C2 - Gas Control for Cells
Chair: Yi-Chin Toh, National University of Singapore, SINGAPORE

Sydney Room

10:45 INVESTIGATION OF DRUG METABOLISM WITH LIVER ZONATION MODEL USING OXYGEN GRADIENT IN A MICROFLUIDIC DEVICE
Satomi Matsumoto1, Eric Leclerc2, Astia Riziki Safitri1, Mathieu Danoy3,
Toshiro Maekawa1, Haruyuki Kinoshita1, Marie Shinohara1,
Kikuo Komori1, Yasuyuki Sakai3, and Teruo Fujii1
1University of Tokyo, JAPAN and 2LIMMS/CNRS-IIS, JAPAN

11:05 A MICROFLUIDIC OXYGENATOR WITH LARGE GAS EXCHANGE SURFACE
Julie Lachaux1, Gilgueng Hwang1, Caterina Casari2,
Nassim Arouche1, Valeria Lotito1, Allisier Paris1,
Cécile V. Denis2, Peter S. Lenting2, Georges Uzan2,
Pierre Molinie1, Olaf Mercier1,
and Anne-Marie Haghiri-Gosnet1
1C2N CNRS, FRANCE, 2Institut National de la Santé et de la Recherche Médicale (INSERM), FRANCE; and 3HML, FRANCE

11:25 3D PRINTED DEVICES FOR 96-WELL GAS CONTROL
Adam Szmelter, Jason Jacob, and David T. Eddington
University of Illinois, Chicago, USA

11:45 Transition
THURSDAY PROGRAM

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:50</td>
<td>A TALE OF SINGLE PORE IN QUASI 2D MEMBRANES</td>
</tr>
<tr>
<td></td>
<td>Michael Graf, Martina Lihter, Michal Macha, Sanjin Marion, and Aleksandra Radenovic</td>
</tr>
<tr>
<td>12:35</td>
<td>CHEMINAS - Young Researcher Poster Awards</td>
</tr>
<tr>
<td>12:45</td>
<td>Lab on a Chip - Widmer Poster Award</td>
</tr>
<tr>
<td>12:55</td>
<td>IMT Masken und Teilungen AG – Microfluidics on Glass Poster Award</td>
</tr>
<tr>
<td>13:05</td>
<td>Sensors (MDPI) - Outstanding Sensors and Actuators, Detection Technologies Poster Award</td>
</tr>
<tr>
<td>13:15</td>
<td>Closing Remarks</td>
</tr>
<tr>
<td>13:20</td>
<td>Speaker Corner (see page 7)</td>
</tr>
<tr>
<td>13:20</td>
<td>Closing Remarks - Conference Adjourns</td>
</tr>
</tbody>
</table>
What ever you need - We have it!

LUCERNA-CHEM
✓ Over 2 Mio. diagnostic & research reagents
✓ 60 innovative suppliers
✓ Very competitive prices
✓ Qualified scientific support

TotalSeq™
Oligonucleotide-Antibody Conjugates
For high-throughput single cell experiments by combining proteomic and transcriptomic data

Quick-DNA/RNA™ Kits
Ready for high-sensitivity assays down to a single-cell. 6µl elution volume for high concentrations!

Functional Microparticles
Flow Cytometry Particles
Polymer Microparticles
Fluorescent Particles
Coated Particles
Magnetic Particles
Nanoparticles etc.

lucerna-chem.ch
Your provider in Switzerland

Hochuen Medical
one of the largest OEM/ODM
in IVD /POCT medical disposables &
devices and medical wearables in China

Contact:
Email: sales.medical@hochuen.com
Website: www.hochuen.com

Congress Center Basel
POSTER PRESENTATIONS

CLASSIFICATION

a Cells, Organisms and Organs on a Chip
b Chemical Applications: Separations, Mixers and Reactions
c Diagnostics, Drug Testing & Personalized Medicine
d Fundamentals in Microfluidics and Nanofluidics
e Micro- and Nanoengineering
f Sensors and Detection Technologies
g Other Applications of Microfluidics
h Late News

See poster floor plan on the last page of this program.

a - Cells, Organisms and Organs on a Chip

Bioinspired, Biomimetic & Biohybrid Devices

M001.a ANTI-FOULING SURFACES FEATURED WITH MAGNETIC ARTIFICIAL CILIA
Shuaizhong Zhang1, Ye Wang1, Patrick R. Onck2, and Jaap M.J. den Toonder1
1Eindhoven University of Technology, THE NETHERLANDS and 2University of Groningen, THE NETHERLANDS

M002.a BIOMECHANICALLY TUNED LUNG-ON-CHIP: TUNING INTRINSIC STIFFNESS OF THE AIR-LIQUID INTERFACE AND ON-CHIP ORIENTATION OF MEMBRANE STRAIN
Lisa D. Muiznieks, Jessica Ayache, Sasha Cai Lesher-Perez, and Guilhem Velvé Casquillas
Elvesys, FRANCE

M003.a SENSING OF OXYGEN CONCENTRATION IN A MICROFLUIDIC DEVICE MIMICKING LIVER 3D MICROARCHITECTURE
Manon Boul1,2, Satomi Matsumoto3, Marie Shinohara3, Yasuyuki Sakai3, Teruo Fuji3, Anne Dubart-Kupperschmitt3, Eric Leclerc3, and Bruno Le Pioufle3
1ENS Paris Saclay, FRANCE, 2Université Paris-Saclay, FRANCE, and 3Tokyo University, JAPAN

T001.a BIOSENSING AND POWER GENERATION ROBOTS USING ANHYDROBIOMIC CHIRONOMID FOR SPACE EXPLORING
Yo Tanaka1, Satoshi Amaya1, Doudou Ma1, Yigang Shen1, Oleg Gusev2,3, Takahiro Kikawada1, and Yaxiaer Yalikun1
1RIKEN, JAPAN, 2NARO, JAPAN, and 3Kazan Federal University, RUSSIA

T002.a MICROFLUIDIC FABRICATION OF BIO-ACTUATORS DRiven BY ARTIFICIAL MUSCLES MADE FROM MOLECULAR MOTORS
Yingzhe Wang1, Yuichi Hiratsuka2, Takahiro Nitta2, Kaoru Uesugi1, and Kehsuke Morishima1
1Osaka University, JAPAN, 2Japan Advanced Institute of Science and Technology (JAIST), JAPAN, and 3Gifu University, JAPAN
Bioinspired, Biomimetic & Biohybrid Devices

<table>
<thead>
<tr>
<th>T003.a</th>
<th>STEREOLITHOGRAPHY (SLA) 3D PRINTED TEMPLATES FOR ENGINEERING PERFUSABLE BIOMIMETIC VASCULATURES IN ALGINATE HYDROGEL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Terry (Tsz Him) Ching¹,², Toh Yi-Chin², and Michinao Hashimoto¹</td>
</tr>
<tr>
<td></td>
<td>¹Singapore University of Technology and Design, SINGAPORE and ²National University of Singapore, SINGAPORE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>W001.a</th>
<th>BASOLATERAL COMPARTMENT PRESSURE MEASUREMENT IN THE CULTURE DEVICE WITH FILTRATION FOR THE EVALUATION OF CELL LAYER CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kotaro Doi¹, Hiroshi Kimura², Masaomi Nangaku¹, and Teruo Fujii¹</td>
</tr>
<tr>
<td></td>
<td>¹University of Tokyo, JAPAN and ²Tokai University, JAPAN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>W002.a</th>
<th>MICROFLUIDICS-ENABLED EXTRUSION OF PROTEIN-BASED TUBULAR BIOMATERIALS AND TISSUES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wuyang Gao, Nima Vaezzadeh, Kelvin Chow, and Axel Guenther</td>
</tr>
<tr>
<td></td>
<td>University of Toronto, CANADA</td>
</tr>
</tbody>
</table>

a - Cells, Organisms and Organs on a Chip

<table>
<thead>
<tr>
<th>M004.a</th>
<th>A HANDHELD MICROFLOW CYTOMETER FOR ENUMERATION OF RESIDUAL WHITE BLOOD CELLS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Byeongyeon Kim, Suyeon Shin, and Sungyoung Choi</td>
</tr>
<tr>
<td></td>
<td>Kyung Hee University, KOREA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M005.a</th>
<th>DIELECTROPHORETIC CANCER-TYPE SORTING CHIP AS ADVANCED LIQUID BIOPSY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yuto Sasaki, Mio Mizoguchi, Ken Yamamoto, and Masahiro Motosuke</td>
</tr>
<tr>
<td></td>
<td>Tokyo University of Science, JAPAN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M006.a</th>
<th>MICROFLUIDIC CHIP FOR T CELL-ANTIGEN PRESENTING CELL INTERACTION CHARACTERIZATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Margaux Duchamp¹, Marion Arnaud², Clarisse Vaillier¹, Sara Bobisse², George Coukos², Alexandre Harari², and Philippe Renaud¹</td>
</tr>
<tr>
<td></td>
<td>¹École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND, ²Centre Hospitalier Universitaire Vaudois, SWITZERLAND, and ³Université de Lausanne, SWITZERLAND</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M007.a</th>
<th>PARALLEL ELECTROROTATION AND SINGLE CELLS HANDLING IN INDIVIDUAL DIELECTRIC MICROCAPS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kevin Keim, Mohamed Z. Rashed, and Carlotta Guiducci</td>
</tr>
<tr>
<td></td>
<td>École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T004.a</th>
<th>AN OPTICAL TWEEZERS INTEGRATED MICROFLUIDIC PLATFORM FOR THE IDENTIFICATION AND RETRIEVAL OF ANTIGEN-SPECIFIC B CELLS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jolien Breukers, Sara Horta, Nick Geuken, Karen Vanhoorebeke, and Jeroen Lammertyn</td>
</tr>
<tr>
<td></td>
<td>KU Leuven, BELGIUM</td>
</tr>
</tbody>
</table>

Cell Capture, Counting, & Sorting

<table>
<thead>
<tr>
<th>M004.a</th>
<th>A HANDHELD MICROFLOW CYTOMETER FOR ENUMERATION OF RESIDUAL WHITE BLOOD CELLS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Byeongyeon Kim, Suyeon Shin, and Sungyoung Choi</td>
</tr>
<tr>
<td></td>
<td>Kyung Hee University, KOREA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M005.a</th>
<th>DIELECTROPHORETIC CANCER-TYPE SORTING CHIP AS ADVANCED LIQUID BIOPSY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yuto Sasaki, Mio Mizoguchi, Ken Yamamoto, and Masahiro Motosuke</td>
</tr>
<tr>
<td></td>
<td>Tokyo University of Science, JAPAN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M006.a</th>
<th>MICROFLUIDIC CHIP FOR T CELL-ANTIGEN PRESENTING CELL INTERACTION CHARACTERIZATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Margaux Duchamp¹, Marion Arnaud², Clarisse Vaillier¹, Sara Bobisse², George Coukos², Alexandre Harari², and Philippe Renaud¹</td>
</tr>
<tr>
<td></td>
<td>¹École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND, ²Centre Hospitalier Universitaire Vaudois, SWITZERLAND, and ³Université de Lausanne, SWITZERLAND</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M007.a</th>
<th>PARALLEL ELECTROROTATION AND SINGLE CELLS HANDLING IN INDIVIDUAL DIELECTRIC MICROCAPS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kevin Keim, Mohamed Z. Rashed, and Carlotta Guiducci</td>
</tr>
<tr>
<td></td>
<td>École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T004.a</th>
<th>AN OPTICAL TWEEZERS INTEGRATED MICROFLUIDIC PLATFORM FOR THE IDENTIFICATION AND RETRIEVAL OF ANTIGEN-SPECIFIC B CELLS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jolien Breukers, Sara Horta, Nick Geuken, Karen Vanhoorebeke, and Jeroen Lammertyn</td>
</tr>
<tr>
<td></td>
<td>KU Leuven, BELGIUM</td>
</tr>
</tbody>
</table>

Bioinspired, Biomimetic & Biohybrid Devices

<table>
<thead>
<tr>
<th>T003.a</th>
<th>STEREOLITHOGRAPHY (SLA) 3D PRINTED TEMPLATES FOR ENGINEERING PERFUSABLE BIOMIMETIC VASCULATURES IN ALGINATE HYDROGEL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Terry (Tsz Him) Ching¹,², Toh Yi-Chin², and Michinao Hashimoto¹</td>
</tr>
<tr>
<td></td>
<td>¹Singapore University of Technology and Design, SINGAPORE and ²National University of Singapore, SINGAPORE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>W001.a</th>
<th>BASOLATERAL COMPARTMENT PRESSURE MEASUREMENT IN THE CULTURE DEVICE WITH FILTRATION FOR THE EVALUATION OF CELL LAYER CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kotaro Doi¹, Hiroshi Kimura², Masaomi Nangaku¹, and Teruo Fujii¹</td>
</tr>
<tr>
<td></td>
<td>¹University of Tokyo, JAPAN and ²Tokai University, JAPAN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>W002.a</th>
<th>MICROFLUIDICS-ENABLED EXTRUSION OF PROTEIN-BASED TUBULAR BIOMATERIALS AND TISSUES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wuyang Gao, Nima Vaezzadeh, Kelvin Chow, and Axel Guenther</td>
</tr>
<tr>
<td></td>
<td>University of Toronto, CANADA</td>
</tr>
</tbody>
</table>

a - Cells, Organisms and Organs on a Chip

<table>
<thead>
<tr>
<th>M004.a</th>
<th>A HANDHELD MICROFLOW CYTOMETER FOR ENUMERATION OF RESIDUAL WHITE BLOOD CELLS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Byeongyeon Kim, Suyeon Shin, and Sungyoung Choi</td>
</tr>
<tr>
<td></td>
<td>Kyung Hee University, KOREA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M005.a</th>
<th>DIELECTROPHORETIC CANCER-TYPE SORTING CHIP AS ADVANCED LIQUID BIOPSY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yuto Sasaki, Mio Mizoguchi, Ken Yamamoto, and Masahiro Motosuke</td>
</tr>
<tr>
<td></td>
<td>Tokyo University of Science, JAPAN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M006.a</th>
<th>MICROFLUIDIC CHIP FOR T CELL-ANTIGEN PRESENTING CELL INTERACTION CHARACTERIZATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Margaux Duchamp¹, Marion Arnaud², Clarisse Vaillier¹, Sara Bobisse², George Coukos², Alexandre Harari², and Philippe Renaud¹</td>
</tr>
<tr>
<td></td>
<td>¹École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND, ²Centre Hospitalier Universitaire Vaudois, SWITZERLAND, and ³Université de Lausanne, SWITZERLAND</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M007.a</th>
<th>PARALLEL ELECTROROTATION AND SINGLE CELLS HANDLING IN INDIVIDUAL DIELECTRIC MICROCAPS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kevin Keim, Mohamed Z. Rashed, and Carlotta Guiducci</td>
</tr>
<tr>
<td></td>
<td>École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T004.a</th>
<th>AN OPTICAL TWEEZERS INTEGRATED MICROFLUIDIC PLATFORM FOR THE IDENTIFICATION AND RETRIEVAL OF ANTIGEN-SPECIFIC B CELLS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jolien Breukers, Sara Horta, Nick Geuken, Karen Vanhoorebeke, and Jeroen Lammertyn</td>
</tr>
<tr>
<td></td>
<td>KU Leuven, BELGIUM</td>
</tr>
</tbody>
</table>
T005.a GROWTH PHENOTYPE BASED REPORTER-FREE SCREENING OF FILAMENTOUS FUNGI IN MICROFLUIDIC DROPLETS
Jing Dai, Huijuan Yan, Jose Wippold, Won-Bo Shim, and Arum Han
Texas A&M University, USA

T006.a INERTIAL MICROFLUIDICS-BASED SEPARATION OF MICROALGAE USING A CONTRACTION–EXPANSION ARRAY MICROCHANNEL
Ga-Yeong Kim, Jaejung Son, Jong-In Han, and Je-Kyun Park
Korea Advanced Institute of Science and Technology (KAIST), KOREA

T007.a ONE-STEP SEPARATION AND TRAPPING OF SINGLE LEUKOCYTES FROM WHOLE BLOOD IN A MICROFLUIDIC DEVICE
Oriana G. Chavez-Pineda, Diana F. Cedillo-Alcantar, and Jose L. Garcia-Cordero
Unidad Monterrey, MEXICO

T008.a VISCOELASTIC PARTICLE FOCUSING BASED IMAGING FLOW CYTOMETRY: AN APPLICATION TO YEAST CELLS
Sun Ok Hong¹, Bo-Hyun Choi¹, Pyung Cheon Lee¹, Sung Sik Lee², and Ju Min Kim¹
¹Ajou University, KOREA and ²ETH Zürich, SWITZERLAND

W003.a A FULLY-AUTOMATED MICROFLUIDIC ROBOT FOR CIRCULATING ENDOTHELIAL PROGENITOR CELL SORTING AND ANALYSIS
Yu Wang¹, Dong-Fei Wang², Hui-Feng Wang³, Bei-Bei Sun¹, Jian-Wei Wang¹, Xiao-Gang Guo², and Qin Fang¹
¹Zhejiang University, CHINA and ²Zhejiang University School of Medicine, CHINA

W004.a CTC ENRICHMENT USING A 3D PRINTED DEVICE COMBINING IMMUNOAFFINITY AND FILTRATION
Chia-Heng Chu, Ruxiu Liu, Tevhide Ozkaya-Ahmavod, and A. Fatih Sarıoglu
Georgia Institute of Technology, USA

W005.a A CIRCULATING FILTRATION SYSTEM FOR CELL RECOVERY
Tingting Hun¹, Yaoping Liu¹, and Wei Wang¹,²
¹Peking University, CHINA and ²National Key Laboratory of Science and Technology on Micro/Nano Fabrication, CHINA

W006.a MICRO-ELECTRO-FLUIDIC-PROBE FOR SEQUENTIAL CELL SORTING AND PATTERNING
Ayoola Brimmo, Anoop Menachery, and Mohammad A. Qasaimeh
New York University, USA

W007.a TOWARDS CENTRIFUGATION-ASSISTED CELL TRAPPING AND ISOLATION IN A TWO-PHASE LIQUID
Wilfred Espulgar, Yuga Okui, Masato Saito, Shohei Koyama, Atsushi Kumanogoh, Hyota Takamatsu, and Eiichi Tamiya
Osaka University, JAPAN
M008.a A PERFUSABLE 3D in vitro ARTERY MODEL INCORPORATING HUMAN VASCULAR SMOOTH MUSCLE CELLS AND ENDOTHELIAL CELLS IN WRINKLED PDMS CHANNELS
Minkyung Cho and Je-Kyun Park
Korea Advanced Institute of Science and Technology (KAIST), KOREA

M009.a CELL BEADS TECHNOLOGY USING MICROFLUIDIC DEVICE AS A NEW PLATFORM FOR VASCULARIZED ORGANOID FORMATION
Shogo Nagata and Shoji Takeuchi
University of Tokyo, JAPAN

M010.a COMPOSITE PDMS-BASED in situ PATTERNING OF COLLAGEN MICROGELS FOR PERFUSION CELL CULTURE MICROSYSTEMS
Misaki Kato, Mayu Fukushi, Masumi Yamada, Rie Utoh, and Minoru Seki
Chiba University, JAPAN

M011.a DEVELOPMENT OF A HYDROGEL-ASSISTED MACRO-PATTERNED PLATFORM FOR MIMICKING THE NATIVE MYOCARDIUM
Tae Hoon Shin, Da Jung Jung, and Gi Seok Jeong
Asan Medical Center, KOREA

M012.a FABRICATION OF SPATIALLY-CONTROLLED 3D LIVER TISSUE VIA LAYERING CELL-LADEN COLLAGEN SHEETS
Jaejung Son and Je-Kyun Park
Korea Advanced Institute of Science and Technology (KAIST), KOREA

M013.a GENERATION OF HIGH ASPECT-RATIO PDMS MICROFIBERS FOR 3D MYELINATION CULTURE OF SCHWANN CELLS
Hui-Ying Lin1,2, Ing Ming Chiu3, Horng-Dar Wang1, and Chia-Hsien Hsu2
1National Tsing Hua University, TAIWAN and 2National Health Research Institutes, TAIWAN

M014.a MODULATING THE CELL ADHESION MICROENVIRONMENT TO MECHANICALLY DRIVE TROPHECTODERM-LIKE ORGANOID FORMATION FROM HUMAN iPS CELLS
Kennedy O. Okeyo1, Osamu Kurosawa2, Hidehiro Oana3, and Masao Washizu3
1Kyoto University, JAPAN, 2RIKEN, JAPAN, and 3University of Tokyo, JAPAN

M015.a PARALLEL FORMATION OF CELL SPHEROIDS BASED ON VIBRATION-INDUCED FLOW
Nanami Minoshima and Takeshi Hayakawa
Chuo University, JAPAN

M016.a STUDY OF SYNERGISTIC EFFECT OF PHOTO-CHEMOTHERAPY ON A NEW 3D BREAST CANCER MODEL UNDER MICROFLUIDIC CONDITIONS
Magdalena Flont, Elzbieta Jastrzebska, and Zbigniew Brzozka
Warsaw University of Technology, POLAND
M017.a TUBING-FREE MICROFLUIDIC PLATFORM FOR CO-CULTURING OF 2D ADHERENT CELLS AND 3D MICROTISSUE SPHEROIDS
Furkan Gökçe, Andreas Hierlemann, and Mario M. Modena
ETH Zürich, SWITZERLAND

T009.a ALGINATE TUBE PROVIDES WITH FIBROBLAST GROWTH ORIENTATION BY THE SUB-MICROSTRUCTURES GENERATED DURING LIQUID ROPE-COILING PROCESS APPLIED TO CONSTRUCT TUBULAR CARDIAC TISSUE
Bo-Heng (Henry) Liu and Fan-Gang Tseng
National Tsing Hua University, TAIWAN

T010.a CELL ORIENTATION CONTROL BASED ON GEOMETRY SENSING IN SELF-ORGANIZED CELL SHEET FORMATION UNDER LIMITED ADHESION CONDITION
Yoshikiyo Kibe, Kennedy O. Okeyo, and Taiji Adachi
Kyoto University, JAPAN

T011.a CONTROLLING THE FORMATION OF OSTEOBLAST-OSTEOCYTE INTERACTIONS BY MICROPATTERNING TO STUDY BONE CELL MECHANOBIOLOGY
Charlotte Yvanoff1, Gintare Garbenciute2, Vytautas Navikas2, Ramunas Valiokas2, and Ronnie Willaert1
1Vrije Universiteit Brussel, BELGIUM and 2Center for Physical Sciences and Technology, LITHUANIA

T012.a EVALUATION OF NEURONAL ACTIVITY IN A NEURON-ASTROCYTE CO-CULTURE SYSTEM USING A MICROPOROUS SIN MEMBRANE
Ayaka Nakama and Takashi Yasuda
Kyushu Institute of Technology, JAPAN

T013.a FAST, INEXPENSIVE, AND BIOCOMPATIBLE FABRICATION PROTOCOL OF 3D ENDOTHELIUM-ON-CHIP USING SOFT THERMOPLASTIC ELASTOMER AND WIRE MOLDS
Nicolas Distasio, Hugo Salmon, Mohammadreza Rasouli, and Maryam Tabrizian
McGill University, CANADA

T014.a HANGING DROP ARRAY CHIP FOR SPHEROID CULTURE WITH FINGER-ACTUATED MICROFLUIDIC MEDIUM EXCHANGE
Juhwan Park, Hwisoo Kim, Jeun Han, and Je-Kyun Park
Korea Advanced Institute of Science and Technology (KAIST), KOREA

T015.a MICROFLUIDIC BIOREACTOR ARRAY FOR HIGH-THROUGHPUT SCREENING AND HATCH-LIKE EXTRACTION OF MUTANT LIBRARIES
Janghyun Ju, Juyeol Bae, and Taesung Kim
Ulsan National Institute of Science and Technology (UNIST), KOREA

T016.a SPATIALLY CONFINED ENDOTHELIAL CELL MONOLAYERS CONSISTENTLY ALIGN PERPENDICULAR TO FLOW
Andrew Kuo, Craig A. Simmons, and Edmond W.K. Young
University of Toronto, CANADA
T017.a STRETCHING MOTION-DRIVEN ECM-BASED PULSATILE FLOW GENERATOR FOR MIMICKING VENOUS BLOOD FLOW IN VIVO
Azusa Shimizu1, Wei Huang Goh2, Shun Itai3, Michinao Hashimoto3, Shigenori Miura3, and Hiroaki Onoe3
1Keio University, JAPAN, 2Singapore University of Technology and Design, SINGAPORE, and 3University of Tokyo, JAPAN

T018.a UNDERSTANDING CELL PROLIFERATION AND MATERIAL-INDUCED CELL DEATH ON MICROFLUIDIC DEVICES MADE OF OFF-STOICHIOMETRIC THIOL-ENES
Kati J. Piironen, Päivi P. Järvinen, Iiro M. Kiiski, and Tiina M. Sikanen
University of Helsinki, FINLAND

W008.a A FULLY AUTOMATED BIOREACTOR SYSTEM FOR PRECISE CONTROL OF STEM CELL PROLIFERATION AND DIFFERENTIATION
Ki-Taek Lim
Kangwon National University, KOREA

W009.a AN AIR-DRIVEN MICRODEVICE TO TUNE THE ANISOTROPIC CURVATURE OF CELL ADHESION PLANE TO PURSE THE MECHANOBIOLOGY OF CURVED SURFACE
Tadahiro Yamashita, Ichiro Matsushita, and Ryo Sudo
Keio University, JAPAN

W010.a CENTIMETER-SIZED TISSUE WITH PERFUSABLE CHANNELS TOWARD CULTURED STEAK
Yasuaki Ishii, Yusuke Hirata, Yuya Morimoto, Al Shima, and Shoji Takeuchi
University of Tokyo, JAPAN

W011.a ELECTRICAL STIMULATION INDUCED MICROALGAE GROWTH AND ASTAXANTHIN PRODUCTION ON A MICROFLUIDIC CHIP
Jaewon Park1, Ziyi Song1, Huixue Song1, Junyi Yao1, Yoon-e Choi2, Hyunsoo Kim2, and Yunhwan Park2
1Southern University of Science and Technology, CHINA, 2Korea University, KOREA, and 3Korea Institute of Machinery and Materials, KOREA

W012.a FABRICATION OF CONTINUOUS MICROPOROUS IN CELL-ENCAPSULATING HYDROGELS USING DENSELY-PACKED MICROENGINEERED FIBERS
Yoshimasa Minoda, Aruto Hori, Rie Utoh, Masumi Yamada, and Minoru Seki
Chiba University, JAPAN

W013.a GENERATION AND CHARACTERIZATION OF CYCLIC OXYGEN GRADIENTS IN MICROFLUIDIC DEVICE FOR CELL CULTURE
Dao-Ming Chang and Yi-Chung Tung
Academia Sinica, TAIWAN
W014.a JELLY-FILLED DONUTS: PARALLEL HYDROGEL PLUGS WITH ISOLATION VALVES TO STUDY GROWTH EFFECTS OF TRANSIENT ANTIBIOTIC ADMINISTRATION
Darius G. Rackus, Petra Jusková, Lucas Armbrrecht, and Petra S. Dittrich
ETH Zürich, SWITZERLAND

W015.a NEW MICROSYSTEM INTEGRATED WITH POROUS POLY (ETHYLENE TEREPHTHALATE) (PET) MEMBRANE FOR ANTICANCER DRUG ANALYSIS
Magdalena Flont, Zuzanna Mackiewicz, Elzbieta Jastrzebska, and Zbigniew Brzozka
Warsaw University of Technology, POLAND

W016.a RAPID AND SPATIALLY SEPERATED HETEROGENOUS 3D CELLULAR PATTERNING USING ELECTROHYDRODYNAMICS
Anoop Menachery1, Abishek Vembadi1, Pavithra Sukumar1, Rachid Rezgui1, and Mohammad A. Qasaimeh1,2
1 New York University, Abu Dhabi, UAE and 2 New York University, USA

W017.a SURFACE MODIFICATION OF PDMS MICROFLUIDIC DEVICES FOR STABLE ENDOTHELIAL GROWTH UNDER HIGH SHEAR STRESS
Asma Siddique and Robert W. Stark
Technical University Darmstadt, GERMANY

M018.a A SINGLE MOLECULE BARCODE NANOBIOSENSOR FOR DYNAMIC MULTIGENE ANALYSIS IN LIVE CELLS DURING TISSUE MORPHOGENESIS AND WOUND HEALING
Yi Lu and Pak Kin Wong
Pennsylvania State University, USA

M019.a IN VITRO-IN SILICO INTERFACE PLATFORM: BRIDGING THE GAP BETWEEN EXPERIMENT AND THEORY BY INFORMATION SYSTEM TO ELUCIDATE CELLULAR BEHAVIOR SYSTEM
Asuka Yamaguchi1, Masakazu Akiyama2, Ikuhiko Nakase1, and Masaya Hagiwara1,3
1 Osaka Prefecture University, JAPAN, 2 Meiji University, JAPAN, and 3 RIKEN, JAPAN

M020.a MICROFLUIDIC MONITORING OF CELL RESPONSE IN COMPRESSIVE MECHANICAL STRESS
Ranjan Mishra, Nevena Srejic, Frank van Drogen, Reinhard Dechant, Sung Sik Lee, and Matthias Peter
ETH Zürich, SWITZERLAND

T019.a DETERMINING MECHANICAL STIMULATION RESPONSES OF PRIMARY CILIA WITH AN INTEGRATED MICROFLUIDICS PLATFORM
Sheng-Han Chu and Nien-Tsu Huang
National Taiwan University, TAIWAN
T020.a INVESTIGATING THE INTERCELLULAR INTERACTION BETWEEN 3D GUT EPITHELIAL MICROTISSUES AND CIRCULATING MAIT CELLS USING A MICROFLUIDIC TILTING PLATFORM
Oanh T.P. Nguyen1, Patrick M. Misun1, Christian Lohasz1, Ramona Nudischer2, Olivier Frey3, Jan Devan4, Gennaro De Libero4, Andreas Hierlemann1, and Kasper Renggli1
1ETH Zürich, SWITZERLAND, 2Hoffmann-La Roche, SWITZERLAND, 3InSphero AG, SWITZERLAND, and 4University of Basel, SWITZERLAND

T021.a OPEN MICROFLUIDIC COCULTURE FACILITATES BIDIRECTIONAL SIGNALING BETWEEN KIDNEY EPITHELIAL AND ENDOTHELIAL CELLS
Tianzi Zhang, Daniel Lih, Ryan J. Nagao, Jun Xue, Erwin Berthier, Jonathan Himmelfarb, Ying Zheng, and Ashleigh B. Theberge
University of Washington, USA

W018.a A MULTIMODAL TRANSFECTION DEVICE FOR HIGH EFFICIENCY, INTRACELLULAR DELIVERY OF BIOMOLECULES
Mohammad Aghaamoo, Neha Garg, Xuan Li, and Abraham P. Lee
University of California, Irvine, USA

W019.a GLIOBLASTOMA MIGRATION ALONG CONSTRAINTS WITH DIFFERENT GEOMETRIES: HOW TO MIMICK BRAIN PARENCHYMA INVASION?
Mehmet C. Tarhan1, Alexandre Mutel2,3, Laurence Desrues2,3,4, Dominique Collard2, and Hélène Castel2,3,4
1IEMN UMR-8520, FRANCE, 2UNIROUEN, INSERM, DC2N, FRANCE, 3LIMMS/CNRS-IIS, JAPAN, 4Institute for Research and Innovation in Biomedicine (IRIB), FRANCE, and 5Ligue Nationale Contre le Cancer, FRANCE

W020.a MICROFLUIDIC DEVICE FOR ELECTRICAL MEASUREMENT OF GAP JUNCTION MEDIATED INTERCELLULAR COMMUNICATION WITH INTEGRATED CALIBRATION
Joel H. Dungan, Juanita D. Mathews, Michael Levin, and Valencia J. Koomson
Tufts University, USA

M021.a AUTOMATED OBSERVATION OF CELL-SIZED LIPOSOME WITH FEEDBACK CONTROL OF THE OUTER ENVIRONMENT
Hironori Sugiyama1, Toshihisa Osaki1,2, Shoji Takeuchi1, and Taro Toyota1
1University of Tokyo, JAPAN and 2KRISTEC, JAPAN

M022.a EJECTION OF LARGE PARTICULATE MATERIALS FROM GIANT UNILAMELLAR VESICLES
Shota Katsuta, Taiji Okano, and Hiroaki Suzuki
Chuo University, JAPAN
M023.a RAPID FORMATION OF LIPID BILAYER MEMBRANES IN PARYLENE-C COATED CHIPS BY PSEUDO-PAINTING OF AN AIR BUBBLE FOR THE FUSION AND DETECTION OF OUTER MEMBRANE VESICLES (OMVS)
Tanzir Ahmed1, Jayesh A. Bafna2, Sander van den Driesche1, Martin Oellers1, Roland Hemmler2, Karsten Gall3, Richard Wagner2, Mathias Winterhalter2, and Michael J. Vellekoop1
1 University of Bremen, GERMANY, 2 Jacobs University, GERMANY, and 3 Ionovation GmbH, GERMANY

T022.a DESIGNING PDMS-BASED MICROFLUIDICS FOR THE PRODUCTION OF SURFACTANT-FREE GIANT LIPID VESICLES
Naresh Yandrapalli and Tom Robinson
Max Planck Institute, GERMANY

T023.a MICROFLUIDIC TRAPS TO PROBE THE MECHANICS OF BIOMIMETIC VESICLES AND THEIR INTERACTION WITH NANO-OBJECTS
Pierre Joseph1, Costanza Montis2, Chiara Magnani1,2,3, Adrien Dutoya1, Fabien Mesnilgrente1, Barbara Lonetti1, Debora Berti1, and Marianne Elias1
1 LAAS-CNRS, FRANCE, 2 University of Florence, ITALY, and 3 Université de Toulouse, FRANCE

W021.a ASSESSMENT OF THE FACTORS INFLUENCING LIPOSOme SIZE IN DEAN-FORCES BASED μMIXERS
Rubén R. López Salazar1, Ixchel Ocampo2, Karl-F. Bergeron3, Anas Alazzam4, Catherine Mounier3, Ion Stiharu5, and Vahé Nerguizian1
1 École de Technologie Supérieure, CANADA, 2 Tecnológico de Monterrey, MEXICO, 3 Université du Québec à Montréal, CANADA, 4 Khalifa University, UAE, and 5 Concordia University, CANADA

W022.a DEVELOPMENT OF A THREE-DIMENSIONAL MICROMIXER DEVICE FOR PRODUCTION OF VARIOUS LIPID-BASED NUCLEIC ACID NANO CARRIERS
Niko Kimura, Masatoshi Maeki, Yusuke Sato, Kosuke Sasaki, Akihiko Ishida, Hirofumi Tani, Hideyoshi Harashima, and Manabu Tokeshi
Hokkaido University, JAPAN

W023.a LIVING IN A BUBBLE: ON CHIP MONITORING OF MICROBIAL PRODUCTION IN LIPID VESICLES
Petra Jusková, Yannick R.F. Schmid, Steven Schmitt, Martin Held, and Petra S. Dittrich
ETH Zürich, SWITZERLAND

M024.a CUBE IN A CHIP: ONE TOUCH 3D TISSUE INTEGRATION AND REMOVAL SYSTEM FOR BODY ON A CHIP PLATFORM
Masaya Hagiwara1,2
1 RIKEN, JAPAN and 2 Oaka Prefecture University, JAPAN
T024.a A LIVER-TUMOR CO-CULTURE SYSTEM TO ASSESS METABOLISM-RELATED DRUG-DRUG INTERACTIONS
Christian Lohasz1, Flavio Bonanini1, Kasper Renggli1, Olivier Frey2, and Andreas Hierlemann1
1ETH Zürich, SWITZERLAND and 2InSphero AG, SWITZERLAND

T025.a INTEGRATED GUT-LIVER ON A CHIP FOR MODELLING NON-ALCOHOLIC FATTY LIVER DISEASE IN VITRO
Jiandong Yang, Yoshikazu Hirai, Ken-ichiro Kamei, Toshiyuki Tsuchiya, and Osamu Tabata
Kyoto University, JAPAN

W024.a A MULTI-MODULE MICROFLUIDIC GASTROINTESTINAL TRACT FOR TESTING FOOD AND DRUGS
Pim de Haan1,2, Milou J.C. Santbergen2,3, Meike van der Zande4, Hans Bouwmeester6, Michel W.F. Nielen3,4, and Elisabeth Verpoorte1

W025.a MICROPHYSIOLOGICAL NETWORK AND COCULTURE OF FIVE MICRO ORGANS (CORTICAL AND HIPPOCAMPAL BRAIN, CARDIAC, LIVER, AND TUMOR 3D MICROTISSUES) ON 96WELL FORMAT BASED BODY ON A CHIP
Chaewon Jin, Hongsoo Choi, and Jin-young Kim
Daegu Gyeongbuk Institute of Science and Technology (DGIST), KOREA

M025.a A MICROFLUIDIC DEVICE TO ENHANCE THE THROUGHPUT OF ELECTROTAXIS SCREENING WITH CAENORHABDITIS ELEGANS MODELS OF PARKINSON’S DISEASE
Khaleed Youssef1, Daphne Archonta1, Terry Kubiseski1, Anurag Tandon2, and Pouya Rezai1
1York University, CANADA and 2University of Toronto, CANADA

M026.a HIGH-THROUGHPUT MECHANICAL PHENOTYPING OF C. elegans DIABETES MODELS USING ELASTOMERIC MICROPILLAR ARRAYS
Samuel Sofela1,2, Sarah Sahloul1, Christopher Stubbs4, Ajymurat Orozaliev1, and Yong-Ak Song1,2
1New York University, USA and 2New York University, Abu Dhabi, UAE

M027.a MULTI-PHENOTYPIC MOVEMENT AND CARDIAC SCREENING OF ZEBRAFISH LARVAE USING BIDIRECTIONAL IMAGING IN A MICROFLUIDIC DEVICE
Arezoo Khalili, Ellen Van Wijngaarden, Georg Zoidl, and Pouya Rezai
York University, CANADA

T026.a A MICROFLUIDIC SYSTEM FOR NEMATODE IMMOBILIZATION AND BACTERIAL COLONIZATION STUDIES IN C. elegans
Vittorio Viri, Maël Arveiler, Thomas Lehnert, and Martin A.M. Gijs
École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND
<table>
<thead>
<tr>
<th>POSTER PRESENTATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisms on Chip (C. elegans, Zebrafish, Arabidopsis, etc.)</td>
</tr>
<tr>
<td>T027.a</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>T028.a</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>W026.a</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>W027.a</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>W028.a</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>a - Cells, Organisms and Organs on a Chip</td>
</tr>
<tr>
<td>Organs on Chip</td>
</tr>
<tr>
<td>M028.a</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>M029.a</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>M030.a</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
M031.a CARTILAGE-ON-CHIP: A PHYSIOLOGICALLY INSPIRED PLATFORM TO REPRODUCE ARTICULAR JOINT COMPRESSION AND SHEAR STRAIN
Carlo Alberto Paggi, Bastien Venzac, Jeroen Leijten, Liliana Moreira-Teixeira Leijten, Marcel Karperien, and Séverine Le Gac
University of Twente, THE NETHERLANDS

M032.a EFFICIENT FABRICATION OF A PRE-INVASIVE BREAST CANCER MODEL VIA DOUBLE EMULSIFICATION OF MATRIGEL
Jelle J.F. Sleeboom1, Cecilia M. Sahlgren1,2, and Jaap M.J. den Toonder1
1Eindhoven University of Technology, THE NETHERLANDS and 2Åbo Akademi University, FINLAND

M033.a HIGH-THROUGHPUT MICROFLUIDIC PLATFORM FOR VASCULARIZATION OF 3D TISSUES: THE MISSING LINK IN TISSUE CULTURE
Arnaud Nicolas1,2, Sara Previdi1,3, Dorota Kurek1, Frederik Schavemaker1, Sebastiaan Trietsch1, Henriette Lanz1, and Paul Vulto1

M034.a MICROFLUIDIC MODEL OF THE BLOOD-RETINAL BARRIER FOR PERMEABILITY TESTS
Jaewon Park1, Sihan Liu1,2, Yau Kei Chan2, and Ho Cheung Shum2
1Southern University of Science and Technology, CHINA and 2University of Hong Kong, CHINA

M035.a NEW GENERATION OF AIR-BLOOD BARRIER MODEL: A LUNG-ON-CHIP WITH A STRETCHABLE BIOLOGICAL MEMBRANE
Pauline Zamprogno1, Simon Wuethrich1, Sven Achenbach1, Janick D. Stucki1, Nina Hobi1, Nicole Schneider-Daum2, Claus-Michael Lehr2, Hanno Huwer3, Ralph A. Schmidt4, and Olivier T. Guenat1,4
1University of Bern, SWITZERLAND, 2Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), GERMANY, 3Völklingen Heart Center, GERMANY, and 4University Hospital of Bern, SWITZERLAND

M036.a RESPONSE OF TUBULAR CELLS BY EXPOSING CONTROLLED SHEAR STRESS TO PRIMARY CILIA AFTER OXIDATIVE STRESS
Masatomo Chikamori1, Hiroshi Kimura2, Soo Hyeon Kim1, Masaomi Nangaku3, and Teruo Fuji2
1Institute of Industrial Science, JAPAN, 2Tokai University, JAPAN, and 3University of Tokyo, JAPAN

M037.a TOWARD A BLOOD-BRAIN BARRIER MICROPHYSIOLOGICAL SYSTEM WITH IN-LINE MONITORING
Ashlynn T. Young1, Vladimir A. Pozdin1, and Michael Daniele1,2
1North Carolina State University, USA and 2University of North Carolina, Chapel Hill, USA
T029.a 3D IN VITRO HIGH THROUGHPUT SCREENING MODEL FOR ANALYSIS OF COLORECTAL CANCER ORGANOID BY RADIOTHERAPY AND CHEMOTHERAPY FOR PRECISION MEDICINE
Dong-Hee Choi, Yong Hun Jung, Seung-Chul Shin, Ji Hun Yang, and Seok Chung
Korea University, KOREA

T030.a ASSESSING BARRIER PROPERTIES USING IMPEDANCE SPECTROSCOPY IN A SEMI-CIRCULAR, BLOOD-BRAIN BARRIER ON-CHIP
Fotios Avgidis, Martijn Tibbe, Anne Leferink, and Loes Segerink
University of Twente, THE NETHERLANDS

T031.a A CELL SHEET-BASED APPROACH FOR RECONSTITUTING IN VITRO BLOOD-BRAIN BARRIER MODEL PERMITTING DIRECT PHYSICAL INTERACTION BETWEEN ENDOTHELIAL CELLS AND NEURAL CELLS
Kennedy O. Okeyo, Saki Kouno, and Taiji Adachi
Kyoto University, JAPAN

T032.a CELLS NEVER DRY: MOTILE MICROORGANISMS IN A MICROBIOSPHERE REALIZED WITH A HIGH-SPEED DROP BY DROP CONTROL
Hironobu Maeda and Tomohiro Kawahara
Kyushu Institute of Technology, JAPAN

T033.a ENGINEERED CORTICAL ORGANOID TO MODEL VALPROIC ACID EXPOSURE
Kangli Cui, Yaqing Wang, Yujuan Zhu, Yaqong Guo, Fangchao Yin, and Jianhua Qin
Dalian Institute of Chemistry Physics, CHINA

T034.a LIVING SKIN-SECTION ON A CHIP
Minghao Nie and Shoji Takeuchi
University of Tokyo, JAPAN

T035.a MULTIPLEXED ORGAN-ON-CHIP DEVICE FOR INCREASED THROUGHPUT ANALYSIS OF THE TISSUE BARRIER FUNCTION
Mariia Zakharova, Marinke van der Helm, Marciano Palma do Carmo, Hai Le-The, Martijn Tibbe, Andries van der Meer, Kerensa Broersen, Jan Eijkel, and Loes Segerink
University of Twente, THE NETHERLANDS

T036.a PUMP-FREE MICROFLUIDIC SYSTEM FOR CELL CULTURE UNDER FLOW
Mohammad Paknahad1,2, Morvarid F. Ghahremani1,2, Caleb Horst1, and Craig Simmons1,2
1 Ted Rogers Centre for Heart Research, CANADA, 2 University of Toronto, CANADA, and 3 CellScale Biomaterials Testing, CANADA
T037.a THE ORGANOTEER: A SENSITIVE TEER MEASUREMENT PLATFORM FOR HIGH THROUGHPUT SCREENING OF ORGANS-ON-CHIPS
Arnaud Nicolas1,2, Frederik Schavemaker1, Sebastiaan J. Trietsch1, Henriette Lanz1, Thomas Hankemeier2, and Paul Vulto1
1Mimetas B.V., THE NETHERLANDS and 2Leiden University, THE NETHERLANDS

T038.a TRICULTURE-BASED IN VITRO SYSTEM OF HUMAN BLOOD-BRAIN BARRIER WITH HIGH IN VIVO RELEVANCE AND ITS APPLICATION AS A DISEASE MODEL FOR DRUG SCREENING
Suyeong Seo1,2, Hyewhon Rhim1,3, Kangwon Lee6, Nakwon Choi1,3, and Hong-Nam Kim1,3
1Korea Institute of Science and Technology (KIST), KOREA, 2Seoul National University, KOREA, and 3Korea University of Science and Technology (KUST), KOREA

W029.a 3D LIVER TISSUE ENHANCED WITH PERFUSABLE VASCULAR CHANNEL AND SINUSOID-LIKE STRUCTURES
Nobuhito Mori, Yuzo Takayama, and Yasuyuki S. Kida
National Institute of Advanced Industrial Science and Technology (AIST), JAPAN

W030.a A BIOMIMETIC BILAYER HUMAN PROXIMAL TUBULE-ON-A-CHIP TO ASSSE PROXIMAL TUBULE CELLS HARVESTED FROM HPSC-DERIVED KIDNEY ORGANOIDS AS A SUBSTITUTE FOR THE IMMORTALIZED CELL COUNTERPART
Ramin Banan Sadeghian1, Yang Liu1, Ryoei Ueno1, Toshikazu Araoka2, Jun Yamashita2, Tatsuji Enoki3, Minoru Takasato4, and Ryuji Yokokawa1
1Kyoto University, JAPAN, 2Center for iPS Cell Research and Application, JAPAN, 3Takara Bio, JAPAN, and 4RIKEN, JAPAN

W031.a A MICROFLUIDIC FLOW CELL FOR MAINTENANCE AND ANALYSIS OF HUMAN SKIN SAMPLES
Kamil Talar1, Alexander Iles1, Matthew Hardman2, and Nicole Pamme1
1University of Hull, UK and 2Hull York Medical School, UK

W032.a EFFECTS OF BONE MARROW-DERIVED OP9 STROMAL CELLS STIMULATED IN A CELL STRETCHING DEVICE ON HEMATOPOIETIC DIFFERENTIATION
Momoko Maeda1, Eriko Kamata1, Kenji Kitajima2, Takahiko Hara2, and Kae Sato1
1Japan Women’s University, JAPAN and 2Tokyo Metropolitan Institute of Medical Science, JAPAN

W033.a ENGINEERING A NOVEL MICROPHYSIOLOGICAL SYSTEM TO RECAPITULATE BIOLOGIC BARRIER FUNCTIONS
Matthew Ishahak1, Quratulain Amin1, Jordan Hill1, Adiel Hernandez1, Laura Wubker1, Siddharth Rawal1, Alessia Fornoni2, and Ashutosh Agarwal1
1University of Miami, USA and 2University of Miami Miller School of Medicine, USA
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>W034.a</td>
<td>ENGINEERING A 3D NEURAL CIRCUIT, BLOOD-BRAIN BARRIER, AND MYELINATION ON A MICROFLUIDIC 96 WELL PLATE</td>
<td>Seung-Ryeol Lee, Sujin Hyung, Seokyoung Bang, and Noo Li Jeon</td>
<td>Seoul National University, KOREA</td>
</tr>
<tr>
<td>W035.a</td>
<td>MUSCLE ON CHIP WITH A MECHANICALLY TUNABLE 3D MICROENVIRONMENT</td>
<td>Chak Ming Leung, Hsih Yin Tan, Louis Jun Ye Ong, and Yi-Chin Toh</td>
<td>National University of Singapore, SINGAPORE</td>
</tr>
<tr>
<td>W036.a</td>
<td>REAL-TIME MONITORING OF OXYGEN CONSUMPTION IN PRECISION-CUT LIVER SLICES</td>
<td>Maciej Grajewski, Ruby E.H. Karsten, and Elisabeth Verpoorte</td>
<td>University of Groningen, THE NETHERLANDS</td>
</tr>
<tr>
<td>W037.a</td>
<td>SEGREGATED TEER MEASUREMENT ON A DOUBLE TUBULAR RECAPITULATION OF THE BLOOD/KIDNEY BARRIER</td>
<td>Todd P Burton, Kelly Klaassen, Arnaud Nicholas, Linda Gijzen, Marianne Vormann, Bob Ronden, Karel Domansky, Sebastiaan Trietsch, and Paul Vulto</td>
<td>Mimetas, THE NETHERLANDS</td>
</tr>
<tr>
<td>W038.a</td>
<td>ASYMMETRICAL CONSTRICTION CHANNEL BASED MICROFLUIDIC IMPEDANCE FLOW CYTOMETRY ENABLING THE QUANTIFICATION OF SPECIFIC MEMBRANE CAPACITANCE, CYTOPLASM CONDUCTIVITY AND CELLULAR DIAMETER FROM 100,000 SINGLE CELLS</td>
<td>Yi Zhang¹², Hongyan Liang¹², Deyong Chen¹², Junbo Wang¹², Ying Xu¹, and Jian Chen¹²</td>
<td>Chinese Academy of Sciences, CHINA, University of Chinese Academy of Sciences, CHINA, Shanghai Jiao-Tong University School of Medicine, CHINA</td>
</tr>
<tr>
<td>M038.a</td>
<td>CO-CAPTURE OF MAGNETIC BEADS AND CELLS FOR SINGLE-CELL ANALYSIS IN MICROFLUIDIC CHAMBERS</td>
<td>Lucas Armbrrecht, Claudius Dietsche, Rafael S. Müller, Jonas Nikoloff, and Petra S. Dittrich</td>
<td>ETH Zürich, SWITZERLAND</td>
</tr>
<tr>
<td>M040.a</td>
<td>DROPLET-ENHANCED ON-CELL ENCODING OF SINGLE CELL SECRETORY FUNCTION</td>
<td>Robert Dimatteo and Dino Di Carlo</td>
<td>University of California, Los Angeles, USA</td>
</tr>
<tr>
<td>M041.a</td>
<td>HIGH-THROUGHPUT FORMATION OF CELL-MICROBEAD PAIRS FOR SINGLE CELL CYTOKINE SECRETION ANALYSIS</td>
<td>Diana F. Cedillo-Alcantar, Roberto Rodriguez-Moncayo, Alberto M. Solís-Serrano, and Jose L. García-Cordero</td>
<td>Centro de Investigación y de Estudios Avanzados del IPN, MEXICO</td>
</tr>
</tbody>
</table>
M042.a LINKING PHYSICAL PHENOTYPE TO DRUG RESISTANCE: SINGLE-CELL MECHANICAL MEASUREMENTS OF ACUTE PROMYELOCYTIC LEUKEMIA
Brian L. Li, Annie M. Maslan, Aaron M. Streets, and Lydia L. Sohn
University of California, Berkeley, USA

M043.a MICROFLUIDIC SYSTEM FOR CULTIVATION AND MONITORING OF INDIVIDUAL RIBOFLAVIN OVERPRODUCING ESCHERICHIA COLI CELLS
Petra Juskova, Lucas Armbrrecht, Steven Schmitt, Martin Held, and Petra S. Dittrich
ETH Zürich, SWITZERLAND

M044.a ON-LINE IMPEDIMETRIC MONITORING OF SINGLE CELL ELECTRICAL LYSIS IN A MICROFLUIDIC DEVICE
Sertan Sukas1,2, Albert van den Berg1, Leon Terstappen1, and Séverine Le Gac1
1 University of Twente, THE NETHERLANDS and 2 Vrije Universiteit Brussel, BELGIUM

M045.a SINGLE CELL FLUOROMETRIC GRANZYME B PROFILING OF IMMUNOLOGICAL CELLS AS EARLY IMMUNOTHERAPY RESPONSE PREDICTOR
Jonathan Briones, Wilfred Espulgar, Hirokuki Yoshikawa, Masato Saito, Shohei Koyama, Atsushi Kumanogoh, Hyouta Takamatsu, and Eiichi Tamiya
Osaka University, JAPAN

M046.a SINGLE-CELL DETECTION OF CYTOKINES USING A SIMPLE NANOWELL CHIP INTEGRATED WITH ENCODED MICROARRAY
Mohammed Abdullah and Jun Wang
Stony Brook University, USA

T039.a ADHERED CELL DROP-SCREEN: ULTRAHIGH THROUGHPUT QUANTITATIVE MORPHOLOGICAL PROFILING OF ADHERED SINGLE CELLS IN RESPONSE TO MECHANICAL CUES
Ming Wang, Hwa Liang Leo, Chwee Teck Lim, and Chia-Hung Chen
National University of Singapore, SINGAPORE

T040.a DROPLET BASED MICROFLUIDIC FLOW CYTOMETRY CAPABLE OF QUANTIFYING COPY NUMBERS OF SPECIFIC SINGLE-CELL PROTEINS
Yuanchen Wei, Beiyuan Fan, Lixing Liu, Hongyu Yang, Deyong Chen, Junbo Wan, and Jian Chen
Chinese Academy of Sciences, CHINA

T041.a IN VITRO SINGLE-CELL VISUALIZATION AND PROFILING OF T CELL–ANTIGEN PRESENTING CELL (APC) INTERACTION
Hiroki Ide, Wilfred Villariza Espulgar, Masato Saito, Taiki Aoshi, and Eiichi Tamiya
Osaka University, JAPAN
T042.a MICHAELIS-MENTEN CYTOMETRY FOR THE EVALUATION OF CHRONIC MYELOGENOUS LEUKEMIA (CML) AT SINGLE-CELL RESOLUTION
Jinzhu Yu, Botond Antal, Ki Oh, Sitapriya Moorthi, Ling Li, Chiara Luberto, Helmut Strey, Phenix-Lan Quan, and Eric Brouzes
Stony Brook University, USA

T043.a MICROVASCULAR IN VITRO CONSTRICITION MODEL FOR IMAGING CANCER CELL DAMAGE AND RECOVERY
Kyohei Terao¹, Hamizah Cognart², Jean-Louis Viovy², and Catherine Villard²
¹Kagawa University, JAPAN, and ²Institut Curie, FRANCE

T044.a REVEALING MICRORNA NEUCLEO-CYTOPLASMIC HETEROGENEITY VIA NANO-PLASMONIC SINGLE-CELL DROPLET SCREENING
Ri Lu¹,², Jia Liu¹, Guoyun Sun¹, Shih-Chung Wei², Song Guo¹, and Chia-Hung Chen¹,²
¹National University of Singapore, SINGAPORE and ²Healthtech, SINGAPORE

T045.a SINGLE TO COUNTABLE-MOLECULE ELISA BY DEVELOPING NANOFUIDIC DEVICE
Ryoichi Ohta, Kazuma Mawatari, Emi Mori, and Takehiko Kitamori
University of Tokyo, JAPAN

T046.a USING ELECTRICAL IMPEDANCE SPECTROSCOPY TO MONITOR THE DISSECTION EVENTS OF SINGLE BUDDING YEAST CELLS IN A MICROFLUIDIC DEVICE
Yangye Geng¹, Haoxi Wang¹, Yingying Wang¹, Shuiping Ouyang², Zixin Wang², Dejing Pan³, and Zhen Zhu¹
¹Southeast University, CHINA, ²Nanjing Forestry University, CHINA, ³Sun Yat-Sen University, CHINA, and ⁴Soochow University, CHINA

W038.a A LIQUID BIOPSY APPROACH TO EARLY DETECTION OF BONE MARROW FIBROSIS VIA SINGLE-CELL FUNCTIONAL PROTEOMICS
Dongjoo Kim¹,², Jonathan Chen¹, Zhuo Chen¹,², Maria Kleppe², Ross L. Levine³, and Rong Fan¹,²
¹Yale University, USA, ²Yale Cancer Center and Yale Stem Cell Center, USA, and ³Memorial Sloan Kettering Cancer Center, USA

W039.a CELLULAR KINEMATIC ANALYSIS OF IMMOBILIZED SINGLE BUDDING YEAST CELLS IN CONTROLLED HYDRODYNAMIC MICROENVIRONMENT
Yingying Wang¹, Xingyu Xu¹, Shuiping Ouyang², Qing-an Huang¹, and Zhen Zhu¹
¹Southeast University, CHINA and ²Nanjing Forestry University, CHINA
W040.a COMPARTMENTALIZED HYDROGEL MICROPARTICLE BASED DROP-SCREEN FOR MULTIMODAL SINGLE-CELL ASSAY
Myat Noe Hsu¹, Ri Lu², Shi-Chung Wei³, Weikang Nicholas Lin³, and Chia-Hung Chen²
¹Singapore-MIT Alliance for Research and Technology, SINGAPORE and ²National University of Singapore, SINGAPORE

W041.a HIGH-THROUGHPUT SINGLE-CELL IMPEDANCE CYTOMETRY OF PANCREATIC TUMOR XENOGRAFTS TO STRATIFY TUMORIGINICITY
Nathan Swami, John McGrath, Carlos Honrado, Sara Adair, and Todd Bauer
University of Virginia, USA

W042.a INDROP RAID: SINGLE CELL TRANSCRIPTOMICS COMBINED WITH INTRACELLULAR (PHOSPHO)PROTEINS QUANTIFICATION
Francesca Rivello¹, Erik van Buijtenen¹,², Kinga Matula³, Klaas Mulder³, and Wilhelm T.S. Huck¹
¹Radboud University, THE NETHERLANDS and ²Aduro Biotech Europe, THE NETHERLANDS

W043.a MAGNETIC RATCHETING OF HYDROGEL DROPS FOR SELECTION OF HIGH MAGNETIC BIOMASS PRODUCTION BACTERIA
Hiromi Miwa¹, Hayley McCausland², Coleman Murray¹, Arash Komeili², and Dino Di Carlo¹
¹University of California, Los Angeles, USA and ²University of California, Berkeley, USA

W044.a MICROSTREAMING FLOW ARISING FROM CELLS EXCITED BY SURFACE ACOUSTIC WAVES
Alinaghi Salari¹,², Appak-Baskoy¹,², Michael Kolios¹,², and Scott Tsai¹,²
¹Institute for Biomedical Engineering, Science and Technology (iBEST), CANADA and ²Ryerson University, CANADA

W045.a NANO-FOCUSED ELECTRIC FIELD FOR NANO-LOCALIZED SIGLE CELL ELECTROPORATION USING ITO NANO-ELECTRODE CHIP
Tuhin S. Santra¹, Srabani Kar¹,², and Fan-Gang Tseng³
¹Indian Institute of Technology (IITM), INDIA, ²University of Cambridge, UK, and ³National Tsing Hua University, TAIWAN

W046.a SINGLE-CELL MICROFLUIDIC PLATFORM TO STUDY ANAEROBIC BACTERIA
Yanqing Song¹, Andrew Glidle¹, Christopher Quince², Gavin Collins³, William Sloan¹, and Huabing Yin¹
¹University of Glasgow, UK, ²University of Warwick, UK, and ³National University of Ireland, IRELAND
M047.a A MULTIPLEXED CELL-FREE ASSAY IN DOUBLE EMULSION DROPLETS
Nicola Nuti, Philipp Rottmann, Ariane Stucki, Sven Krähenbühl, and Petra S. Dittrich
ETH Zürich, SWITZERLAND

M048.a SELF-ASSEMBLED MONOLAYER ON CYTOP SURFACE ALLOWS ENCAPSULATION OF DYNAMIC PROTEIN SYSTEMS IN PATTERNED CHAMBERS
Hiromune Eto¹, Naoki Soga², Henri G. Franquelim¹, Alena Khmelinskaia¹,³, Lei Kai¹,⁴, Michael Heymann¹, Hiroyuki Noji¹, and Petra Schwille¹
¹Max Planck Institute, GERMANY, ²University of Tokyo, JAPAN, ³University of Washington, USA, and ⁴Jiangsu Normal University, CHINA

T047.a HIGH-THROUGHPUT ERROR-FREE DNA PURIFICATION THROUGH MICRO-PILLAR CHIP AND LASER RETRIEVAL SYSTEM
Huiran Yeom, Namphil Kim, Seo Woo Song, Sumin Lee, and Sunghoon Kwon
Seoul National University, KOREA

W047.a A MICROFLUIDIC SYSTEM TO VALIDATE A NEW KINETIC FRAMEWORK FOR WHOLE-CELL ELECTROCATALYSIS IN MICROFLOW REACTORS
Mir Pouyan Zarabadi, Manon Couture, Steve J. Charette, and Jesse Greener
Laval University, CANADA

W048.a QUORUM SENSING LIPOSOMES: LIPOSOme-BASEd ARTIFICIAL CELLS THAT SENSE THEIR POPULATION DENSITY
Taishi Tonooka¹, Lev Tsimring², and Jeff Hasty²
¹Kyoto Institute of Technology, JAPAN and ²University of California, San Diego, USA

M049.a ENHANCE CELL CONFLUENCE USING GRADUALLY-DEGRADED ALGINATE-COLLAGEN MATERIAL FOR TUNICA INTERMEDIA FORMATION
Seok Oh¹, Van Thuy Duong¹, Huu Lam Phan¹, HyeWon Son¹, Trung Nguyen¹, Hang Phuong Nguyen¹, Thi Huong Le¹, Suwon Lee¹, HyeSeok Lee¹, Chang Ho Hwang², and Kyo-in Koo¹
¹University of Ulsan, KOREA and ²University of Ulsan College of Medicine, KOREA
T048.a "ON–CHIP VASCULAR BED" ENABLES INTEGRATION OF A SPHEROID AND PERFUSABLE VASCULATURE
Yoshikazu Kameda1, Ryu Okada1, Kensuke Yabuuchi2, Toshikazu Araoka1, Jun K. Yamashita1, Tatsuii Enoki1, Minoru Takasato2, and Ryuji Yokokawa1
1Kyoto University, JAPAN, 2RIKEN, JAPAN, and 3Takara Bio Inc., JAPAN

T049.a OVER-FIVE-MILLIMETER DIAMETER ALGINATE-COLLAGEN ENDOTHELIALIZATION TUBULAR SCAFFOLD FORMATION
Van Thuy Duong1, Seok Oh1, Hruu Lam Phan1, HyeWon Son1, Trung Nguyen1, Hang Phuong Nguyen1, Thi Huong Le1, Suwon Lee1, HyeSeok Lee1, Chang Ho Hwang1, and Kyo-in Koo1
1University of Ulsan, KOREA and 2University of Ulsan College of Medicine, KOREA

W049.a DEVELOPMENT OF A MICROFLUIDIC DEVICE CAPABLE OF GENERATING OXYGEN GRADIENTS FOR THREE-DIMENSIONAL CELL CULTURE IN HYDROGEL
Heng-Hua Hsu1,2, Ping-Liang Ko1, Hsiao-Mei Wu1, Tse Ang Lee1, Hsi Chieh Lin1, and Yi Chung Tung1
1National Tsing Hua University, TAIWAN and 2Academia Sinica, TAIWAN

a - Cells, Organisms and Organs on a Chip

Other Applications in Biology

M050.a CULTIVATION OF ‘UNCULTIVABLE’ MARINE SEDIMENT BACTERIA USING A MICROBIAL DOMESTICATION POD (MD Pod)
Tartela Alkayyali, Emily Pope, Bradley Haltli, Russell G. Kerr, and Ali Ahmadi
University of Prince Edward Island, CANADA

M051.a ON-CHIP DEFORMABILITY MEASUREMENT OF EUKARYOTIC CELLS: COMPARISON TO ANUCLEATE CELLS
Hiroaki Ito1, Kohei Fujimoto2, and Makoto Kaneko3
1Chiba University, JAPAN, 2Osaka University, JAPAN, and 3Meijo University, JAPAN

T050.a GLASS MICROFLUIDIC HIGH THROUGHPUT HYPOXIA SCREENING SYSTEM FOR OXIDATIVE STRESS ON OCULAR SURFACE CELLS
Jeongyun Kim2, Chiwan Koo1, Won Choi1, Eunjin Lee3, Kyongjin Cho2, Jongil Ju2, and Jiyeon Choi4
1Dankook University, KOREA, 2Hanbat National University, KOREA, 3Seoul National University, KOREA, and 4Korea Institute of Machinery and Materials (KIMM), KOREA

W050.a A HIGH THROUGHPUT SCREENING PLATFORM TO REJUVENATE SKELETAL MUSCLE FUNCTION VIA ELECTRICAL STIMULATION
Min Young Kim1, Hyun Young Shin1, Seung Joon Lee1, and Minseok S. Kim1,2
1Daegu Gyeongbuk Institute of Science and Technolog (DIGIST), KOREA and 2Transitional Responsive Medicine Center (TRMC), KOREA
Other Applications in Biology

W051.a MICROFLUIDIC INVESTIGATION OF RED BLOOD CELL PHASE SEPARATION IN COMPLEX MICROCHANNEL NETWORKS
Alberto Mantegazza, Francesco Clavica, and Dominik Obrist
University of Bern, SWITZERLAND

M052.b ESTABLISHMENT OF LABO-IN-A-MICRODROPLET FOR AZO COMPOUND SYNTHESIS
Daiki Tanaka1, Shunsuke Sawai1, Takuo Sugaya1, Yoshito Nozaki1, Dong Hyun Yoon1, Taisuke Isano3, Hitoshi Yamagata2, Hiroyuki Fujita3, Tetsushi Sekiguchi3, Takashiro Akitsu2, and Shuichi Shoji1
1Waseda University, JAPAN, 2Canon Medical Systems Corp., JAPAN, and 3Tokyo University of Science, JAPAN

M053.b SYNTHESIS OF Au@Ag NANOPARTICLES AT A LOW-COST FDM-BASED 3D-PRINTED MICROFLUIDIC DEVICE
Lucas P. Bressan, Taissa M.S. Lima, Géssica D. da Silveira, and José A.F. da Silva
State University of Campinas, BRAZIL

T051.b AUTOMATED CAPILLARY DROPLET REACTOR FOR THE SYNTHESIS OF IRON OXIDE GOLD CORE-SHELL NANOPARTICLES
Christian D. Ahrberg, Ji Wook Choi, and Bong Geun Chung
Sogang University, KOREA

T052.b ON-CHIP SYNTHESIS OF Au NANOPARTICLES BY MICROWAVE-INDUCED REACTION IN MICROCHANNEL EMBEDDED IN THE POST-WALL WAVEGUIDE
Akinobu Yamaguchi1, Mitsuyoshi Kishihara2, Takao Fukuoka1, Masaya Takeuchi1, and Yuichi Utsumi1
1University of Hyogo, JAPAN and 2Okayama Prefectural University, JAPAN

W052.b COFFEE CUP-SIZED MICRODROPLET RADIOSYNTHESIZER
Jia Wang, Philip H. Chao, and R. Michael van Dam
University of California, Los Angeles, USA

W053.b PARTICLE ENCAPSULATION IN MICROFLUIDIC DROPLETS WITH MASS-SPECTROMETRIC INVESTIGATION OF HETEROGENEOUS REACTIONS
Monique Kretzschmar and Detlev Belder
Leipzig University, GERMANY
M054.b COUPLING ON-CHIP SEPARATIONS TO ION MOBILITY SPECTROMETRY
Nora T. Hartner, Sebastian K. Piendl, Christian-Robert Raddatz, Christian Thoßen, Rico Warias, Stefan Zimmermann, and Detlev Belder
Leipzig University, GERMANY

M055.b PAPER MICROFLUIDIC CASSETTE INTEGRATED WITH PINCHING ELECTRODES FOR SPRAY PLUM FOCUSING AND HIGH PERFORMANCE MS DETECTIONS
Yi-Chieh Li and Che-Hsin Lin
National Sun Yat-sen University, TAIWAN

M056.b TOWARDS USB POWERED μPADS: 5 VOLT PAPER ISOTACHOPHORESIS
Federico Schaumburg1, Pablo A. Kler1, Claudio L.A. Berlii1, and Charles S. Henry2
1Universidad Nacional del Litoral-CONICET, ARGENTINA and 2Colorado State University, USA

T053.b CONTINUOUS BINARY PROTEIN SEPARATION IN A MICROFABRICATED ELECTRICAL SPLITT DEVICE
Andrea Capuano1,2, Andrea Adami1, Viviana Mulloni1, and Leandro Lorenzelli1
1University of Trento, ITALY and 2Fondazione Bruno Kessler, ITALY

T054.b DEVELOPMENT OF ON-LINE DESALTING DEVICE BY MEMBRANE INTEGRATION INTO NANOFLUIDIC DEVICE
Kyojiro Morikawa, Yutaka Kazoe, Hisashi Shimizu, Kazuma Mawatari, and Takehiko Kitamori
University of Tokyo, JAPAN

T055.b SINGLE STEP SEPARATION AND CONCENTRATION OF BIOMARKER PROTEINS USING AGAROSE BASED MINIATURIZED ISOELECTRIC GATES FOR BEDSIDE DIAGNOSTICS
Sreekant Damodara1, Alison E. Fox-Robichaud1,2, Dhruba J. Dwivedi1,2, Patricia C. Liaw1,2, and P. Ravi Selvaganapathy1
1McMaster University, CANADA and 2Thrombosis and Atherosclerosis Research Institute, CANADA

W054.b CONTINUOUS LITHIUM EXTRACTION FROM HIGH MG2+/LI+ RATIO BRINE BASED ON ION CONCENTRATION POLARIZATION
Minsoo Lee1, Hyukjin J. Kwon2, Woohul Jung3, and Geunbae Lim1
1Pohang University of Science and Technology, KOREA, 2Massachusetts Institute of Technology, USA, and 3Research Institute of Industrial Science and Technology, KOREA
W055.b MICROSCALE FORMATION OF IMMOBILIZED pH GRADIENT IN SIMPLE STRAIGHT CHANNEL
Sukyo Joung¹, Dohyun Kim², Jintae Kim³, and Minsub Chung⁴
¹Hongik University, KOREA, ²Myongji University, KOREA, and ³Konkuk University, KOREA

W056.b SMALL RNA EXTRACTION FROM CELL-LYSATE USING ISOTACHOPHORESIS
Ruba Khnouf¹, Crystal Han², and Sarah Munro³
¹Jordan University of Science and Technology, JORDAN, ²San Jose State University, USA, and ³University of Minnesota, USA

M057.b EVALUATION OF MIXING PERFORMANCE OF ON-CHIP MICROMIXER WITH LOW DEAD VOLUME BASED ON VIBRATION-INDUCED FLOW
Toshiyuki Matsui, Hiroaki Suzuki, and Takeshi Hayakawa
Chuo University, JAPAN

M058.b ORGANIC CHEMICAL REACTION ON AN ELECTROWETTING-ON-DIELECTRIC (EWOD) DIGITAL MICROFLUIDIC DEVICE
Matin Torabinia, Parham Asgari, Junha Jeon, and Hyejin Moon
University of Texas, Arlington, USA

M059.b THREE-DIMENSIONAL LAMINAR-FLOW MICROMIXER FOR KINETIC STUDIES OF INCREASED ACCURACY THROUGH A PRE-FOCUSED STREAM INJECTION
Sheng Ni and Levent Yobas
Hong Kong University of Science and Technology, HONG KONG

T056.b 3D HELICAL MICROMIXER BY LOST WAX CASTING
Daiki Tachibana, Ken Matsubara, Yoshimi Tanaka, Hiroki Ota, and Ohmi Fuchiwaki
Yokohama National University, JAPAN

T057.b DRUG MICRONIZATION USING HIGH PRESSURE MICROFLUIDICS
Deepali Arora¹, Rossen Sedev², Craig Priest³, Chau Chun Beh⁴, and Neil Foster⁵
¹Curtin University, AUSTRALIA and ²University of South Australia, AUSTRALIA

T058.b PILOT-SCALE SOLVENT EXTRACTION OF HIGH-VALUE METALS
Die Yang, Moein N. Kashani, and Craig Priest
University of South Australia, AUSTRALIA

T059.b VERSATILE MICROFLUIDIC PLATFORM FOR PROTOCOLS ON A CHIP VIA CAPACITIVE SENSING FOR SAMPLE DISPENSING AND SURFACE ACOUSTIC WAVE (SAW) DRIVEN MIXING
Yaqi Zhang¹, Citsabehsan Devendran¹, Alex de Marco¹, and Adrian Neild¹
¹Monash University, AUSTRALIA and ²ARC Centre of Excellence for Advanced Molecular Imaging, AUSTRALIA

Electrophoretic & Chromatographic Separation

Micromixers & Microreactors
Micromixers & Microreactors

W057.b AN ULTRA-RAPID ACOUSTIC MIXER BY BOUNDARY-DRIVEN MICROSTREAMING OF INTEGRATED SHARP-EDGES AND BUBBLES
Mohammadreza Rasouli and Maryam Tabrizian
McGill University, CANADA

W058.b IMPEDANCE-BASED EXCITATION-FREQUENCY OPTIMIZATION FOR A TRANSFER-TAPE-SUPPORTED LASER-MICROMACHINED CAVITATION-MICROSTREAMING MICROMIXER
Hyunjin Jeon, Kaba Abdi Mirgissa, Kyehan Rhee, and Dohyun Kim
Myongji University, KOREA

W059.b THE EFFECT OF MICROREACTOR STRUCTURE ON QUANTITATIVE ANALYSIS OF TRACE VOLATILE ORGANIC COMPOUNDS
Qi Li, Zhenzhen Xie, Michael H. Nantz, and Xiao-An Fu
University of Louisville, USA

b - Chemical Applications: Separations, Mixers and Reactions

Particle Separation

M060.b HIGH THROUGHPUT SEPARATION OF BACTERIA FROM BLOOD FOR SEPSIS DIAGNOSTICS USING EXTENDED ELASTO-INERTIAL MICROFLUIDICS
Sharath Narayana Iyengar, Tharagan Kumar, Gustaf Mårtensson, and Aman Russom
KTH Royal Institute of Technology, SWEDEN

M061.b PDMS-BASED MICROPOROUS SIEVING MATRICES FOR SIZE-SELECTIVE FILTRATION OF SUBMICROMETER-SIZED PARTICLES
Takatomo Ouchi, Yurika Sakurai, Kayo Nakada, Masumi Yamada, and Minoru Seki
Chiba University, JAPAN

M062.b THE MAGNUS FORCE ON SPINNING MICROPARTICLES
Miguel Solsona1, Hans Keizer1, Hans L. de Boer1, Yannick P. Klein1, Wouter Olthuis1, Leon Abelmann2, and Albert van den Berg1
1University of Twente, THE NETHERLANDS, and 2Saarland University, THE NETHERLANDS

M063.b VIABLE/NON-VIABLE CELL ASSAY USING ELECTROKINETIC DETERMINISTIC LATERAL DISPLACEMENT
Bao D. Ho, Jason P. Beech, and Jonas O. Tegenfeldt
Lund University, SWEDEN

T060.b INERTIAL FOCUSING OF DEFORMABLE PARTICLES IN TRIANGULAR CHANNELS
Yo-han Choi, Jeong-ah Kim, and Wonhee Lee
Korea Advanced Institute of Science and Technology (KAIST), KOREA

T061.b SIZE BASED SEPARATION OF PARTICLES WITH MICROFLUIDIC VORTEX TRAPPING INCORPORATING AN ORTHOGONAL TURN
Navya Rastogi, Pranjal Seth, Ramray Bhat, and Prosenjit Sen
Indian Institute of Science, INDIA
T062.b THE SEPARATION AND IDENTIFICATION OF PARASITE EGGS FROM HORSE FECES
Jason P. Beech, Kushagr Punyani, Eva Tydén, and Jonas O. Tegenfeldt
1Lund University, SWEDEN and 2Swedish University of Agricultural Sciences, SWEDEN

W060.b A 3D PRINTED MODULAR MICROFLUIDIC DEVICE FOR LARGE SCALE CELL HARVESTING FROM BIOREACTORS
Mahsa Asadniaye Fardjahromi, Lin Ding, Sajad Razavi Bazaz, Graham Vesey, Mohsen Asadnia, and Majid Ebrahimip Yazdani
1University of Technology Sydney, AUSTRALIA, 2Regeneus Pty Ltd, AUSTRALIA, and 3Macquarie University, AUSTRALIA

W061.b MULTIPLE SIZE SEPARATION OF MICROPARTICLES WITH LOW DEAD VOLUME BASED ON GRAVITY-AIDED VIBRATION-INDUCED FLOW
Naoki Kitada and Takeshi Hayakawa
Chuo University, JAPAN

W062.b VERTICAL SLIT-FRACTIONATION: HIGH-THROUGHPUT PARTICLE/CELL SEPARATION
Naotaka Jin, Jumpei Yamamoto, Masumi Yamada, Kazuki Iijima, Koji Katayama, and Minoru Seki
1Chiba University, JAPAN and 2Tosoh Corporation, JAPAN

M064.b MICROFLUIDIC DEVICE FOR DIRECT MEASUREMENT OF INITIAL RATE OF ENZYME REACTION BY ELECTROPHORETIC FILTRATION
Junku Takao, Tatsuro Endo, Hideaki Hisamoto, and Kenji Sueyoshi
Osaka Prefecture University, JAPAN

M065.b SCREENING OF RARE EARTH EXTRACTION: DIRECT ANALYSIS OF RATE AND PHASE BEHAVIOR IN A MICROPILLAR ARRAY
Claudia Binder, Benjamin Lageder, Bronwyn Bradshaw-Hajek, Barbara Breeze, Emma Schofield, Stephen Woollam, and Craig Priest
1University of South Australia, AUSTRALIA, 2Johnson Matthey Technology Centre, UK, and 3Anglo American’s Technical Solutions, SOUTH AFRICA

T063.b AN INTEGRATED CHIP-APPROACH TO STUDY ENANTIOSELECTIVE HETEROGENEOUS CATALYSTS AT THE MICROSCALE
Rico Warias, Hannes Westphal, Daniele Ragno, Alessandro Massi, and Detlev Belder
1Leipzig University, GERMANY and 2University of Ferrara, ITALY

T064.b MICROFLUIDIC METHOD FOR INVESTIGATING KINETICS OF EMULSION DESTABILIZATION
Marcin Dudek, Diana Fernandes, Eirik H. Herø, and Gisle Øye
1Norwegian University of Science and Technology, NORWAY and 2Polytechnic Institute of Porto, PORTUGAL
W063.b FEMTO-LITER PROTEIN PURIFICATION BY PARALLEL TWO-PHASE NANOFLUIDICS
Shu Matsuura, Yutaka Kazoe, and Takehiko Kitamori
University of Tokyo, JAPAN

W064.b OPTIMIZATION OF PROTEIN CONJUGATION ON A USER-FRIENDLY MICROFLUIDIC CHIP
Andrew W.L. Kinman and Rebecca R. Pompano
University of Virginia, USA

M066.c A MICROFLUIDIC PLATFORM FOR DIAGNOSIS OF OVARIAN CLEAR CELL CARCINOMA VIA QUANTIFICATION OF FXYD2 GENE
Ting-Hang Liu¹, Chang-Ni Lin², Keng-Fu Hsu³, and Gwo-Bin Lee¹
¹National Tsing Hua University, TAIWAN, ²National Cheng Kung University Hospital, TAIWAN, and ³National Cheng Kung University, TAIWAN

M067.c ARRAY OF MICRO-MAGNETS FOR CTC SORTING IN LAB-ON-A-CHIP DEVICES
Lucie Descamps¹, Samir Mekkaoui¹, Emmanuelle Laurenceau¹, Marie-Charlotte Audry¹, Jessica Garcia², Léa Payen², Damien Le Roy³, and Anne-Laure Deman¹
¹Lyon Institute of Nanotechnology, FRANCE, ²Hospices Civils de Lyon, FRANCE, and ³Institut Lumière Matière, FRANCE

M068.c DEVELOPING AN OPTICAL DNA MAPPING TOOLBOX TO IDENTIFY CHROMOSOMAL TRANSLOCATIONS IN ACUTE MYELOID LEUKEMIA
Miriam Hitz¹, Gaurav Goyal², Vilhelm Müller², Linda Fogelstrand³, and Fredrik Westerlund²
¹University of Applied Sciences, Aachen, GERMANY, ²Chalmers University of Technology, SWEDEN, and ³Sahlgrenska University Hospital, SWEDEN

M069.c RAPID AND VIABLE ISOLATION OF HETEROGENEOUS CIRCULATING TUMOR CELLS USING HIGH-DENSITY TAPERED-SLIT FILTERS
Jae-Eul Shim¹, Jiyoon Bu¹, Mi-Kyung Lee¹, Young-Ho Cho¹, Tae-Ha Kim², Jong-Uk Bu², and Sae-Won Han³
¹Korea Advanced Institute of Science and Technology (KAIST), KOREA, ²SenPlus, Ltd., KOREA, and ³Seoul National University Hospital, KOREA

T065.c A HERRINGBONE MICROFLUIDIC PROBE FOR AFFINITY SEPARATION OF CELLS
Ayoub Ggia¹,², Pavithra Sukumar¹, Muhammedin Deliorman¹, and Mohammad Qasaimeh¹,²
¹New York University, Abu Dhabi, UAE and ²New York University, NY, USA
Cancer Research, Capture & Analysis of Circulating Tumor Cells

T066.c AN INTEGRATED MICROFLUIDIC PLATFORM TO DETECT TUMOR CELLS FROM BILE JUICE OF CHOLANGIOCARCINOMA PATIENTS BY USING NOVEL AFFINITY REAGENTS
Wen-Yen Huang1, Nai-Jung Chiang2, Cheng-Hsiu Chang3, Priya Gopinathan1, Terry D. Juang1, Hsiu-Chi Tu2, Yen-Shen Shan2, Shang-Cheng Hung3, and Gwo-Bin Lee1
1 National Tsing Hua University, TAIWAN, 2 National Cheng Kung University Hospital, TAIWAN, and 3 Academia Sinica, TAIWAN

T067.c BIOPHYSICS OF CIRCULATING TUMOR CELL CLUSTERS
Baris R. Mutlu1, Taronish Dubash1, Claudius Dietsche2, Avanish Mishra1, Kevin Keim1, Jon Edd1, Daniel Haber1, Shyamala Maheswaran1, and Mehmet Toner1
1 Massachusetts General Hospital and Harvard Medical School, USA, 2 ETH Zürich, SWITZERLAND, and 3 Ecole Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND

T068.c MONITORING IMMUNOLOGICAL SYNAPSES AT SINGLE CELL LEVEL IN A MICROFLUIDIC DEVICE
Faruk A. Shaik1, Clara Lewuillon1,2, Yasmine Touil1,2, Aurélie Guillemette1,2, Bruno Quesnel1,2, Carine Brinster1,2, Loïc Lemonnier3, Dominique Collard4, and Mehmet C. Tarhan5
1 University of Lille, FRANCE, 2 INSERM UMRS-1172, FRANCE, 3 INSERM U1003, FRANCE, 4 University of Tokyo, JAPAN, and 5 IEMN UMR-8520, FRANCE

T069.c SEPARATION/CAPTURE OF CANCER CELLS IN BLOOD USING A NUCLEIC-ACID APTAMER MODIFIED DYNAMIC DEFORMABLE MICROFILTER
Yuta Nakashima1, Soichiro Fukuyama1, Seitaro Kumamoto1, Keiichiro Yasuda2, Yusuke Kitamura2, Masaaki Iwatsuki1, Hideo Baba1, Toshihiro Ihara2, and Yoshitaka Nakanishi
1 Kumamoto University, JAPAN and 2 Ogic Technologies, JAPAN

W065.c A MICROFLUIDIC PLATFORM FOR APPLYING LOCALIZED AND DYNAMICALLY-CONTROLLED COMPRESSION ON CANCER CELLS
Sevgi Onal, Maan M. Alkaisi, and Volker Nock
University of Canterbury, NEW ZEALAND

W066.c APPLICATION OF DNA-DIRECTED PATTERNING TO FABRICATE AN IN VITRO BONE MARROW MICROENVIRONMENT FOR THE HIGH-THROUGHPUT STUDY OF PROSTATE CANCER DORMANCY
Molly Kozminskey and Lydia Sohn
University of California, Berkeley, USA

W067.c FOCUSING AND SORTING OF TUMOR CELL CLUSTERS IN AN INERTIAL MICROCHANNEL
Jian Zhou, Qiyue Luan, and Ian Papautsky
University of Illinois, Chicago, USA
PICKING OF CIRCULATORY TUMOR CELLS (CTC’S) USING A MICROFABRICATED GLASS PIPETTE INTEGRATED WITH SACA CHIP BASED DIGITIZED IMAGING SYSTEM (DIGI-SACA)

Ping-Hao Yeh1, Venkanagouda S. Goudar1, Hsin-Yao Wu1, Hsueh-Yao Chu1, and Fan-Gang Tseng1,2

1 National Tsing Hua University, TAIWAN and 2 Academica Sinica, TAIWAN

IN SITU TOTAL ANALYSIS SYSTEM OF CLINICALLY ACTIONABLE GENETIC ABERRATIONS OF SINGLE CIRCULATING TUMOR CELLS ON CHIP

Amos Chungwon Lee1, Jessica Svedlund2, Evangelia Darai2, Yongju Lee1, Ahyoun Choi1, Sumin Lee1, Seo Woo Song1, Daewon Lee1, Yeongjae Choi1, Yunjin Jeong1, Narayanan Madaboosi2, Mats Nilsson2, and Sunghoon Kwon1

1 Seoul National University, KOREA and 2 Science for Life Laboratory, SWEDEN

A CMOS-BASED LAB-ON-CHIP DIAGNOSTIC SYSTEM FOR RAPID DETECTION AND WORLDWIDE MONITORING OF AZOLE-RESISTANT ASPERGILLUS FUMIGATUS

Imperial College London, UK

A MICRONEEDLE-BASED LATERAL FLOW IMMUNOASSAY FOR RAPID PROTEIN DETECTION

Xue Jiang and Peter B. Lillehoj

Michigan State University, USA

A SIMPLE POINT-OF-CARE TEST FOR DRUG MONITORING IN WHOLE BLOOD OF PATIENTS WITH AUTOIMMUNE DISEASES

Henry Ordutowski, Francesco Dal Dosso, Séverine Vermeire, Ann Gils, Jeroen Lammertyn, and Dragana Spasic

KU Leuven, BELGIUM

CAPILLARY DRIVEN POROUS PDMS MICRONEEDLE FOR NAKED-EYE GLUCOSE SENSOR

Hakjae Lee, Kai Takeuchi, Yui Sasaki, Nobuyuki Takama, Tsuyoshi Minami, and Beomjoon Kim

University of Tokyo, JAPAN
M074.c DEVELOPMENT AND CLINICAL TESTING OF A MICROFLUIDIC IMMUNOAFFINITY BASOPHIL ACTIVATION TEST FOR POINT-OF-CARE ALLERGY DIAGNOSIS
Frida Kalm1,2, Zenib Aljadi1,2, Harisha Ramachandraiah2, Caroline Nilsson1,3, Ola Winqvist4, Joachim Lundahl1,2, Anna Nopp1,2, and Aman Russom2
1 Karolinska Institutet and, SWEDEN, 2 KTH Royal Institute of Technology, SWEDEN, 3 Sachs’ Children and Youth Hospital, SWEDEN, and 4 Karolinska University Hospital, SWEDEN

M075.c FLOW VISUALIZATION IN A CORONARY NETWORK WITH MICROVASCULAR OBSTRUCTION (MVO) USING A MULTISCALE IN-VITRO BENCHTOP MODEL
Mirunalini Thirugnanasambandam1, Christian Wüthrich1, Sabrina Frey1, Peter Heeb2, Cornelia Nef2, André Bernard2, and Dominik Obrist1
1 University of Bern, SWITZERLAND and 2 University of Applied Sciences Buchs NTB, SWITZERLAND

M076.c FULLY-INTEGRATED CARTRIDGE FOR FAST POINT-OF-CARE DIAGNOSIS OF PERIODONTAL DISEASE
Katherine E. Boehle, J. Jacob Carrano, and John C. Carrano
Paratus Diagnostics, LLC, USA

M077.c IOT PCR SYSTEM FOR DISEASE DETECTION AND SPREAD MONITORING
Hanliang Zhu1, Pavel Podesva1, Xiaocheng Liu1, Haoqing Zhang1, Tomas Teply2, Ying Xu1, Honglong Chang1, Airong Qian1, and Pavel Neuzil1
1 Northwestern Polytechnical University, CHINA and 2 Czech Technical University, CZECH REPUBLIC

M078.c NANOFUIDIC BARCODES FOR QUANTIFICATION/IDENTIFICATION OF BIOMARKERS
Sokhna M. Ngom1, François-Damien Delapiere2, Fatima Flores-Galicia1, Stephane Guilet1, Edmond Cambril1, Jean Gamby1, Antoine Pallandre1, Isabelle Le Potier1, and Anne-Marie Haghiri-Gosnet1
1 C2N-CNRS, FRANCE, 2 SPEC-CEA, FRANCE, and 3 LCP-CNRS, FRANCE

M079.c OPTIMIZING ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY BASED IMMUNOASSAYS ON ZINC-OXIDE-NANOWIRE PAPER-BASED ELECTRODES
Xiao Li1,2,3, Hao Fu1,2, Ted Li1, and Xinyu Liu1,2
1 University of Toronto, CANADA, 2 McGill University, CANADA, and 3 Stanford University, USA

M080.c POINT-OF-CARE HIV NUCLEIC ACID SCREENING WITH A MAGNETOFLUIDIC ON-DEMAND ASSAY CARTRIDGE
Alexander Y. Trick, Fan-En Chen, Liben Che, and Tza-Huei Wang
Johns Hopkins University, USA
M081.c RAPID SEPSIS DIAGNOSIS BY PHAGOCYTIC ACTIVITY OF IMMUNE CELLS
Seyong Kwon, Min Seok Lee, and Joo H. Kang
Ulsan National Institute of Science and Technology (UNIST), KOREA

M082.c SELF-CONTAINED DIAGNOSTIC PLATFORM FOR PATHOGEN AND ANTIBIOTIC RESISTANCE DETECTION FOR DIABETIC FOOT ULCERS
Joerg Nestler1, Cornelia Stiehl1, Jenny Graunitz1,2, Sascha Geidel1,2, Andreas Morschhauser2, Thomas Otto2, Martina Schneemann2,6, Apoorva Jnana3, Thokur Streepathy Murali3, Kapaettu Satyamoorthy3, Sakthi U. Maheswari3, Siddharth Ramakrishnan4, Purbasha Halder5, Dhananjaya Dendukuri5, Frank F. Bier6, and Harald Peter6
1BiFlow Systems GmbH, GERMANY, 2Fraunhofer ENAS, GERMANY, 3Manipal Academy of Higher Education, INDIA, 4Achira Laboratories Pvt. Ltd., INDIA, 5Potsdam University, GERMANY, and 6Fraunhofer IZI-BB, GERMANY

M083.c THIN POLYMERIC SHEET-BASED IMMUNOASSAY PLATFORMS INTEGRATED WITH MICRO/NANO-IMPRINTED MULTISCALE ARCHITECTURES
Shuhei Aoyama1,2, Yuto Akiyama2, Kenji Monden2, Masumi Yamada1, and Minoru Seki1
1Chiba University, JAPAN and 2Denka Co., Ltd., JAPAN

M084.c WORLD-TO-CHIP INTERFACE FOR BLOOD-PLASMA SEPARATION ON A DIGITAL MICROFLUIDIC DEVICE
Christopher Dixon, Julian Lamanna, and Aaron R. Wheeler
University of Toronto, CANADA

T070.c A LAB-ON-A-DISK DEVICE FOR ISOLATION AND IDENTIFICATION OF PARASITE EGGS IN STOOL
Sertan Sukas1, Bieke Van Dorst2, Agata Kryj1, Ole Lagatie3, Wim De Malsche1, and Lieven Stuyver2
1Vrije Universiteit Brussel, BELGIUM and 2Janssen Diagnostics, BELGIUM

T071.c A NOVEL DIAGNOSTIC DEVICE FOR RAPID TESTING OF ANTIBIOTIC ALLERGIES: FOCUS ON FLUIDIC DESIGN AND MANUFACTURING OF DISPOSABLE DISCS
Elizaveta Vereshchagina1, Sergi Morais2, Luis A. Tortajada-Garano2, Angel Maquieira2, Estrella Fernandez2, Teresa Molina2, Veceslav Linte3, Brindus Comanescu4, Michal M. Mielenki4, Erik Andreassen4, Anna Franquesa-Vazquez2, Werner Balika2, Alfredo Sáez4, and Sergio Peransi Llopis6
1SINTEF Digital, NORWAY, 2Universitat Politècnica de València, SPAIN, 3Optoelectronica, ROMANIA, 4SINTEF Industry, NORWAY, 5STRATEC Consumables GmbH, AUSTRIA, and 6Lumensia Sensors, SPAIN
T072.c **AN INTEGRATED MICROFLUIDIC DEVICE FOR BLOOD PLASMA SEPARATION AND IMMUNOASSAY DETECTION**

Stanley C. Liu¹, Suraiya Rasheed², Neha Garg³, Paul Yoo³, Mohammad Aghaamoor³, and Abraham Lee³

¹Arcadia High School, USA, ²University of Southern California, USA, and ³University of California, Irvine, USA

T073.c **CHIP-AND-DIP: CAPILLARY-DRIVEN FLOW DEVICES FOR POINT-OF-CARE DIAGNOSTICS**

Sammer-ul Hassan and Xunli Zhang

University of Southampton, UK

T074.c **DEVELOPMENT OF AN AFFORDABLE AND SENSITIVE DIAGNOSTIC TEST FOR DENGUE DISEASE USING MICROFLUIDICS AND SMARTPHONES**

Sophie M. Jégouic¹ and Alexander D. Edwards¹,²

¹University of Reading, UK and ²Capillary Firm Technology Ltd, UK

T075.c **FLUORESCENCE SIGNAL AMPLIFICATION FOR SENSITIVE ENZYME IMMUNOASSAY UTILIZING AN IMMUNO-WALL**

Keine Nishiyama¹, Toshihiro Kasama², Masatoshi Maeki³, Akihiko Ishida¹, Hirofumi Tani¹, Yoshinobu Baba¹, and Manabu Tokeshi¹

¹Hokkaido University, JAPAN, ²University of Tokyo, JAPAN, and ³Nagoya University, JAPAN

T076.c **HEMORHEOMETER-ON-A-CHIP: ANALYSIS OF BLOOD BIOPHYSICAL PARAMETERS IN A MICROCHANNEL**

Ziya Isiksacan, Murat Serhatlioglu, and Caglar Elbuken

Bilkent University, TURKEY

T077.c **LAB-ON-CHIP PLATFORM WITH FULLY INTEGRATED SAMPLE PREPARATION MODULE COUPLED WITH A HYBRIDIZATION-FREE SURFACE ACOUSTIC WAVE SENSOR FOR RAPID FOODBORNE PATHOGEN DETECTION**

Katerina Tsougeni¹, Georgia Kaprou¹,², Christos-Mortiz Loukas¹, George Papadakis¹, Audrey Hamiot¹, Michael Eck³, David Rabus³, George Kokkoris¹, Vasileios Papadopoulos¹, Bruno Dupuy⁴, Gerhard Jobust⁵, Electra Gizeli¹,², Angeliki Tserepi¹,², and Evangelos Gogolides¹,²

¹NCSR-Demokritos, GREECE, ²University of Crete, GREECE, ³Institute of Molecular Biology and Biotechnology-FORTH, GREECE, ⁴Institute Pasteur, FRANCE, ⁵Jobst Technologies GmbH, GERMANY, and ⁶SENSEor SAS, FRANCE

T078.c **NANOPLASMO-FLUIDIC PCR CHIP WITH MICROLITER VOLUME FOR RAPID DIAGNOSTICS**

Byoung-Hoon Kang¹, Youngseop Lee², and Ki-Hun Jeong¹

¹Korea Advanced Institute of Science and Technology (KAIST), KOREA and ²University of California, Berkeley, USA
Diagnostic Devices

T079.c PAPER-BASED DEVICE WITH INTEGRATED ION-SELECTIVE OPTODES FOR COLORIMETRIC QUANTIFICATION OF SALIVARY METAL IONS
Yasuhiro Suenaga, Hiroyuki Shibata, Yuki Hiruta, and Daniel Citterio
Keio University, JAPAN

T081.c POROUS MICRONEEDLE ELECTRODES FOR THE ELECTROCHEMICAL SENSING ON SKIN
Hiroyuki Kai
Tohoku University, JAPAN

T081.c REUSABLE MICROFLUIDIC DEVICE FOR COMPLETE BLOOD COUNT APPLICATIONS
Damien Isebe1, Amin Amirouche2, Jean L. Papilleau2, Philippe Piedcoq1, Manuel Alessio2, Nicolas Verplanck2, Pierre Blandin2, Amaïs Ali-Cherif1, and Yves Fouillet2
1HORIBA Medical, FRANCE and 2CEA, LETI-Health, FRANCE

T082.c SINGLE-STEP BIOLUMINESCENCE LATERAL FLOW IMMUNOASSAYS FOR DIAGNOSTICS
Riho Shimazu1, Junnosuke Kawahara1, Kosuke Tomimuro1, Kazushi Misawa1, Yan Ni1, Yuki Hiruta1, Maarten Merkx2, and Daniel Citterio1
1Keio University, JAPAN and 2Eindhoven University of Technology, THE NETHERLANDS

T083.c TOWARDS INTEGRATED, AUTONOMOUS AND LOW-COST DIAGNOSTICS AT THE POINT-OF-CARE FROM WHOLE BLOOD TO ANSWER
Amin Kazemzadeh, Ruben R.G Soares, Noa Lapins, and Aman Russom
KTH Royal Institute of Technology, SWEDEN

W070.c A LARGE-VOLUME SPUTUM COLLECTION AND DRY-STORAGE DEVICE FOR TUBERCULOSIS MOLECULAR DIAGNOSTIC TESTING
Bhushan J. Toley, Andrea Dsouza, and Saylee Jangam
Indian Institute of Science, INDIA

W071.c A PORTABLE AND FULLY AUTOMATED SYSTEM FOR RAPID DETECTION OF PROTEIN BIOMARKERS IN PERIPHERAL BLOOD
Minjie Shen1, Nan Li1, and Youchun Xu1,2
1Tsinghua University, CHINA and 2National Engineering Research Center for Beijing Biochip Technology, CHINA

W072.c AUTOMATED PORTABLE DEVICE FOR ANTIMICROBIAL SUSCEPTIBILITY TEST OF ANTIBIOTICS COMBINATION
Kuo-Wei Hsu1, Wen-Bin Lee1, Huey-Ling You2, Mel S. Lee2, and Gwo-Bin Lee1
1National Tsing Hua University, TAIWAN and 2Kaohsiung Chang Gung Memorial Hospital, TAIWAN
<table>
<thead>
<tr>
<th>Poster Number</th>
<th>Title</th>
<th>Authors</th>
<th>Institution</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>W073.c</td>
<td>DESIGNING, MANUFACTURING, AND VERIFICATION OF RAPID DIAGNOSIS KIT CARTRIDGES FOR UNDILUTED WHOLE BLOOD APPLICATIONS</td>
<td>Yo Han Choi and Kwang Hyo Chung</td>
<td>Electronics and Telecommunications Research Institute, Korea</td>
<td>Korea</td>
</tr>
<tr>
<td>W074.c</td>
<td>DISTANCE READOUT-BASED PAPER DEVICES FOR MULTIPLEXED URINALYSIS</td>
<td>Rika Sawano, Hiroyuki Shibata, Kento Maejima, Yuki Hiruta, and Daniel Citterio</td>
<td>Keio University, Japan</td>
<td>Japan</td>
</tr>
<tr>
<td>W075.c</td>
<td>FULLY-AUTOMATED SENSITIVE BLOOD-TYPING CHIP</td>
<td>Ken Yamamoto, Ryosuke Sakurai, and Masahiro Motosuke</td>
<td>Tokyo University of Science, Japan</td>
<td>Japan</td>
</tr>
<tr>
<td>W076.c</td>
<td>HYBRIDIZATION-BASED DNA ANALYSIS BY SELF-HEATING NANOWIRE MICROFLUIDIC DEVICES</td>
<td>Hiromi Takahashi¹, Takao Yasui¹,², Keiko Shinjo¹, Quanli Liu¹, Taisuke Shimada¹, Noritada Kaji³, Hiromu Kashida¹, and Yoshinobu Baba¹,²</td>
<td>¹Nagoya University, Japan, ²Japan Science and Technology Agency (JST), Japan, ³Kyushu University, Japan, and ⁴National Institute of Advanced Industrial Science and Technology (AIST), Japan</td>
<td>Japan</td>
</tr>
<tr>
<td>W077.c</td>
<td>LAB-ON-PCB PLATFORM FOR THE SENSITIVE AND RAPID DETECTION OF URINARY TRACT INFECTIONS</td>
<td>Georgia Kaprou, Myrto Fillipidou, Sotiris Douskas, George Kokkoris, Panagioti Petrout, Dimitris Mestellos, Stavros Chatzandroulis, and Angeliki Tserepi</td>
<td>National Center for Scientific Research ‘Demokritos’, Greece</td>
<td>Greece</td>
</tr>
<tr>
<td>W078.c</td>
<td>RAPID SALIVA SAMPLING AND DIAGNOSTIC LAB-ON-A-CHIP FOR POINT-OF-CARE TESTING (POCT) OF UNBOUND PARA THYROID HORMONE (PTH)</td>
<td>Vinitha TU, Sthitodhi Ghosh, Alexander Milleman, Thinh H. Nguyen, and Chong H. Ahn</td>
<td>University of Cincinnati, USA</td>
<td>USA</td>
</tr>
<tr>
<td>W079.c</td>
<td>PHASE CHANGE MATERIALS AS AN ENABLER FOR MALARIA DETECTION IN LOW-RESOURCE SETTINGS</td>
<td>Dries Vloemans¹, Francesco Dal Dosso¹, Carlos L. Orero¹, Joanne Macdonald²,³, and Jeroen Lammertyn¹</td>
<td>¹KU Leuven, BELGIUM, ²University of the Sunshine Coast, AUSTRALIA, and ³Columbia University, USA</td>
<td>Belgium, Australia, USA</td>
</tr>
<tr>
<td>W080.c</td>
<td>PRODUCT DEVELOPMENT OF A PORTABLE MICROFLUIDIC DEVICE FOR THE DETECTION OF BACTERIAL CONTAMINATION IN ENVIRONMENTAL LIQUID SAMPLES</td>
<td>Luis F. Alonzo¹, Andrew Miller¹, Troy Hinkley¹, Anne-Laure M. Le Ny¹, Sam R. Nugen², and Kevin P. Nichols¹</td>
<td>¹Intellectual Ventures Lab, USA and ²Cornell University, USA</td>
<td>USA</td>
</tr>
</tbody>
</table>
POSTER PRESENTATIONS

Diagnostic Devices

W081.c SEGMENTED MICROFLUIDICS ASSISTED BACTERIAL ISOLATION FOR SEPSIS DIAGNOSIS FROM LARGE VOLUME OF BLOOD
Suhanya Duraiswamy\(^1,2\), Wu Ruige\(^1\), and Wang Zhiping\(^1\)
\(^1\)SIMTech, SINGAPORE and \(^2\)Indian Institute of Technology Hyderabad, INDIA

W082.c SLμRP: A MODULAR SCALABLE AUTOMATED MICROFLUIDIC SYSTEM FOR DIAGNOSTIC ASSAY OPTIMIZATION AND CARTRIDGE PROTOTYPING
Carlos F. Ng\(^1\), David P. Kalish\(^1\), Anne V. Cheng\(^1\), Richie E. Kohman\(^1,2\), Jenny M. Tam\(^1,2\), George M. Church\(^1,2\), Richard Novak\(^1\), and Donald E. Ingber\(^1,2,3\)
\(^1\)Harvard University, USA, \(^2\)Harvard Medical School, USA, and \(^3\)Boston Children’s Hospital, USA

W083.c TOWARDS POINT-OF-CARE HIV DIAGNOSTICS USING DUAL-LABELLED ROLLING CIRCLE PRODUCTS FOR EFFICIENT CAPTURE AND DETECTION IN A MICROFLUIDIC DEVICE
Ruben R.G. Soares\(^1\), Sibel Cftci\(^2\), João C. Varela\(^2\), Ashokkumar Manickam\(^3\), Ujjwal Neogi\(^3,4\), Mats Nilsson\(^2\), Narayanan Madaboosi\(^2\), and Aman Russom\(^1\)
\(^1\)KTH Royal Institute of Technology, SWEDEN, \(^2\)Stockholm University, Sweden, \(^3\)Karolinska Institutet, Sweden and \(^4\)University of Missouri, USA

Drug Development, Screening & Drug Delivery

M085.c FABRICATION OF 3D IN VITRO MICRO-PHYSIOLOGICAL SYSTEM CAPABLE TO STUDY THE SYSTEMIC DELIVERY OF ONCOLYTIC VIRUS
Sang Woo Lee\(^1\), Kyoung Jin Lee\(^2\), Soo Yeon Jeong\(^1\), HeuiRan Lee\(^2\), and Gi Seok Jeong\(^2\)
\(^1\)Asan Medical Center, KOREA and \(^2\)University of Ulsan College of Medicine, KOREA

M086.c FIBER-SHAPED 3D TISSUE IN A 96 WELL PLATE FOR HIGH-THROUGHPUT DRUG SCREENING
Midori Kato-Negishi\(^1,2\), Jun Sawayama\(^1\), and Shoji Takeuchi\(^1\)
\(^1\)University of Tokyo, JAPAN and \(^2\)Musashino University, JAPAN

M087.c TOWARDS EFFICIENT DRUG CARRIERS - FUNCTIONALIZED GRAPHENE OXIDE STUDY ON 2D-MONOLAYER AND 3D-SPHEROID BREAST CANCER MODELS
Agnieszka Zuchowska, Artur Kasprzak, Kamil Zukowski, Marta Mazurkiewicz-Pawlicka, Artur Malolepszy, Elzbieta Jastrzebska, Magdalena Poplaw ska, and Zbigniew Brzozka
Warsaw University of Technology, POLAND

T084.c DIGITAL MICROFLUIDIC DRUG SCREENING ON BIOPSIES FROM XENOGRAFT MOUSE BREAST CANCER
Jiao Zhai, Yanwei Jia, Pui-in Ma, and Rui P. Martins
University of Macau, CHINA
T085.c MICROFLUIDIC IMMOBILIZED ENZYME REACTORS FOR PREDICTION OF DRUG CLEARANCE *IN VIVO*
Iiro Kiiski\(^1\), Sanna Artes\(^1\), Ville Jokinen\(^2\), Päivi Järvinen\(^3\), and Tiina Sikanen\(^1\)
\(^1\)University of Helsinki, FINLAND and \(^2\)Aalto University, FINLAND

T086.c MICROSYSTEM FOR EVALUATION THE EFFECTIVENESS OF THERAPEUTIC PROCEDURES (CT AND ECT)
Sandra Skorupska, Ilona Grabowska-Jadach, Artur Dybko, and Zbigniew Brzózka
Warsaw University of Technology, POLAND

T087.c ULTRA-HIGH-THROUGHPUT SCREENING OF BACTERIAL LIBRARIES TO IDENTIFY NOVEL METABOLITES THAT INDUCE MITOCHONDRIAL BIOGENESIS AND FUNCTION
Anna Desalvo\(^1\), Catherine Klapholz\(^1\), Gareth Ettridge\(^2\), Christina Kahramanoglou\(^1\), Kamila Bienkowska\(^1\), Robert Lightowlers\(^2\), Doug Turnbull\(^2\), and Stuart Wood\(^1\)
\(^1\)Nanna Therapeutics Ltd, UK and \(^2\)Wellcome Centre for Mitochondrial Research, UK

W084.c EXTRAVASATION OF SOFT NANOPARTICLES SIMULATED ON AN EASY-TO-OBSERVE MEMBRANE-INTEGRATED MICROFLUIDIC DEVICE
Mayu Watanabe\(^1\), Yumi Moriya\(^1\), Hiroaki Matsuba\(^2\), Akihiro Kishimura\(^2\), Yoshiki Katayama\(^2\), and Naoki Sasaki\(^1\)
\(^1\)Toyo University, JAPAN and \(^2\)Kyushu University, JAPAN

W085.c INJECTABLE WIRELESS MICRO-DEVICE INTEGRATED WITH PHOTODEGRADABLE HYDROGEL FOR DEEP TISSUE THERAPEUTICS
Sophie Lian\(^1\), Yi Liu\(^1\), Rongzhou Lin\(^1,2\), John.S. Ho\(^1,2\), and Chia-Hung Chen\(^1,2\)
\(^1\)National University of Singapore, SINGAPORE and \(^2\)Institute for Health Innovation and Technology (iHealthtech), SINGAPORE

W086.c SIDE-BY-SIDE 2D AND 3D CELL CULTURING MICRODEVICES FOR DRUG TOXICITY SCREENING
Päivi Järvinen\(^1\), Ashkan Bonabi\(^2\), Ville Jokinen\(^2\), and Tiina Sikanen\(^1\)
\(^1\)University of Helsinki, FINLAND and \(^2\)Aalto University, FINLAND

W087.c ULTRASOUND-TRIGGERED CONTROLLED RELEASE OF NANOPARTICLES FROM HYDROGEL MICROBEADS BY RELEASE-PROMOTING PARTICLES
Takeshi Kubota\(^1\), Yuta Kurashina\(^1,2\), and Hiroaki Onoe\(^1\)
\(^1\)Keio University, JAPAN and \(^2\)Tokyo Institute of Technology, JAPAN
M088.c BIOMIMETIC MEMBRANE ENABLED MULTIVALENT MICROFLUIDIC CHIP FOR HIGHLY EFFICIENT ENRICHMENT OF CIRCULATING TUMOR CELLS
Lingling Wu¹, Xin Qu¹, Yanling Song¹, and Chaoyong Yang¹,²
¹Shanghai Jiao Tong University School of Medicine, CHINA and ²Xiamen University, CHINA

M089.c HANDHELD DEVICE FOR CENTRIFUGATION-FREE NUCLEIC ACID EXTRACTION
Ruige Wu, Pinhui Lee, Ke Gan, Wei Hua, and Zhiping Wang
Singapore Institute of Manufacturing Technology (A*Star), SINGAPORE

M090.c INTEGRATED MICROFLUIDIC DEVICE FOR CIRCULATING EXOSOMES DETECTION TOWARDS BREAST CANCER DIAGNOSIS
Wenwen Chen¹, Wentao Su¹, Hongjing Li², and Jianhua Qin¹
¹Chinese Academy of Sciences, CHINA and ²First Affiliated Hospital of Dalian Medical University, CHINA

M091.c MICROFLUIDIC DEVICE FOR THE SEPARATION OF BLOOD PLASMA FROM CAPILLARY SAMPLES
Giulia Deiana¹, Alvaro J. Conde¹,², Conni McCarthy¹,², James Dear¹, Stewart Smith¹, and Maïwenn Kersaudy-Kerhoas¹,²
¹University of Edinburgh, UK and ²Heriot-Watt University, UK

T088.c CREATING A MAP FOR SURGEONS: DIRECT BLOTTING ASSISTED STAMPING OF TISSUE FOR MALDI IMAGING MASS SPECTROMETRY USING DISCONTINUOUS DE-WETTED ARRAYS
Katherine Donovan, Haidy Metwally, Prashant Agrawal, David Simon, David Berman, and Richard Oleschuk
Queen’s University, CANADA

T089.c HIGH-THROUGHPUT SEPARATION AND COLLECTION OF EXOSOMES BASED ON SURFACE ZETA POTENTIAL TOWARD EXOSOMAL DIAGNOSTICS AND THERAPY
Hiroaki Takehara¹,², Hiromi Kishita², Shusuke Sato², and Takanori Ichiki¹,²
¹University of Tokyo, JAPAN and ²Innovation Center of NanoMedicine (iCONM), JAPAN

T090.c LONG DNA ISOLATION AND IMAGING USING LATERAL DISPLACEMENT ARRAYS INTEGRATED WITH DNA COMBING
Oskar E. Ström, Jason P. Beech, and Jonas O. Tegenfeldt
Lund University, SWEDEN
T091.c NITROGEN-MUSTARD COATED MAGNETIC BEADS FOR HYBRIDIZATION AND ELUTION-FREE CIRCULATING TUMOR DNA DETECTION
Benediktus N. Hapsianto1, Naoshi Kojima2, Ryoji Kurita2, Hitoshi Yamagata3, Hiroyuki Fujita3, Teruo Fuji1, and Soo Hyeon Kim1
1 University of Tokyo, JAPAN, 2 National Institute of Advanced Industrial Science and Technology (AIST), JAPAN, and 3 Canon Medical Systems Corporation, JAPAN

W088.c SEARCHING CANCER-SPECIFIC EXTRACELLULAR VESICLE USING SIZE FRACTION AND SINGLE VESICLE ANALYSIS
Dongyoung Kim1, Hyun-Kyung Woo1,2, Chaeheun Lee1,2, Yoojung Min1, and Yoon-Kyoung Cho1,2
1 Institute for Basic Science (IBS), KOREA and 2 Ulsan National Institute of Science & Technology (UNIST), KOREA

W089.c INKJET-PRINTING BASED INTEGRATION OF MICROFLUIDICS ON FROZEN SECTION FOR SPATIALLY STAINING
Fengyi Zheng1, Jiasheng Huang1, Xiaoyi Shi1, Fei Pei2, and Zhihong Li1
1 Peking University, CHINA and 2 Peking University Health Science Center, CHINA

W090.c MAGNETIC BEAD FREE DNA EXTRACTION ENABLED BY EWOD DIGITAL MICROFLUIDICS
Shubhodeep Paul and Hyejin Moon
University of Texas, Arlington, USA

W091.c POLYVINYL ALCOHOL (PVA)-FUNCTIONALIZED FILTER FOR EFFECTIVE CELL CAPTURE AND RELEASE
Tingyu Li1, Yaoping Liu1, and Wei Wang1,2
1 Peking University, CHINA and 2 National Laboratory of Science and Technology on Micro/Nano Fabrication, CHINA

M092.c BACK-TO-BACK CO-CULTURE OF NEURONS/ASTROCYTES ON A MICROPOROUS SIN MEMBRANE AND MULTICHANNEL MEASUREMENT OF NEURONAL POTENTIAL USING A MICROELECTRODE ARRAY
Satoshi Yoshida and Takashi Yasuda
Kyushu Institute of Technology, JAPAN

M093.c ON-LINE MICRODIALYSIS-MICROCHIP ELECTROPHORESIS WITH ELECTROCHEMICAL DETECTION FOR CONTINUOUS IN VIVO MONITORING OF CATECHOLAMINES
Susan M. Lunte, Shamal M. Gunawardhana, Galina A. Bulgakova, and Sara R. Thomas
University of Kansas, USA
T092.c CHARACTERIZATION OF NEURON SIGNALING USING MICROELECTRODE ARRAY COMBINED WITH FAST AND PRECISE COOLING DEVICE FOR CRYOANESTHESIA
Jaehyun Kim1, Jong Seung Lee2, Soyeon Noh3, Nuree Lee1, Jungchul Lee4, Taesung Kim5, Gunho Kim6, Seung-Woo Cho7, and Jungyul Park1
1 Sogang University, KOREA, 2Yunsei University, KOREA, 3Ulsan National Institute of Science and Technology (UNIST), KOREA, and 4Korea Advanced Institute of Science and Technology (KAIST), KOREA

W092.c ELECTROPHYSIOLOGICAL RECORDINGS OF CORTICO-STRIATAL NETWORK ACTIVITY IN MICROFLUIDIC-MEA-HYBRID SYSTEM
Jelena Stevanović1,2, Kathrin Zobel1, Bernhard Wolfrum1, and Andreas Offenhäusser1
1 Forschungszentrum Jülich GmbH, GERMANY and 2RWTH Aachen University

M094.c A VERSATILE MICROFLUIDIC PLATFORM FOR AUTOMATING COMPLEX BIOLOGICAL AND CHEMICAL PROTOCOLS
Mais J. Jebrail, Eugenia Carvajal, Eduardo Cervantes, Poornasree Kumar, Winnie Chow, Yu-Hung Chen, and Foteini Christodoulou
Miroculus, USA

M095.c DIAGNOSIS OF METHYLATED DNA FRAGMENTS OF TUMOR SUPPRESSOR GENES IN BLOOD BY UTILIZING METHYLATION-SPECIFIC APTAMERS ON A MICROFLUIDIC SYSTEM
Chih-Hung Wang and Gwo-Bin Lee
National Tsing Hua University, TAIWAN

M096.c HAIRPIN-STRUCTURED PCR ENHANCER FOR MICROFLUIDIC PLATFORMS
Ren Shen1, Yanwei Jia1, Pui-In Mak1, and Rui P. Martins1,2
1 University of Macau, CHINA and 2Universidade de Lisboa, PORTUGAL

M097.c MICROWELL ARRAY BASED NAZYME BIOASSAY FOR MUTANT & MULTIPLEXED TARGET DETECTION
Saba Safdar, Karen Ven, Julie van Lent, Jeroen Lammertyn, and Dragana Spasic
KU Leuven, BELGIUM

T093.c AN ULTRASENSITIVE, SEMI-QUANTITATIVE MEASUREMENT OF HIV NUCLEOSIDE REVERSE TRANSCRIPTASE INHIBITORS (NRTI) WITH RT-RECOMBINASE POLYMERASE AMPLIFICATION (RT-RPA) FOR RAPID PREP ADHERENCE TESTING
Jane Y. Zhang, Ayokunle O. Olarewaju, Andrew T. Bender, Yu Zhang, Paul K. Drain, and Jonathan D. Posner
University of Washington, USA
T094.c DNA DIGESTION USING IMMOBILIZED DNASE TYPE I IN A MICROFLUIDIC CARTRIDGE
Jenny Graunitz1,2, Sandra Kuhn3, Cornelia Stiehl2, Martina Schnemann1,3, Andreas Morschhauser1, Harald Peter2, Frank Bier1, and Joerg Nestler2
1 University of Potsdam, GERMANY, 2 Biflow Systems GmbH, GERMANY, 3 Mittweida University of Applied Sciences, GERMANY,
4 Fraunhofer Institute for Electronic Nano Systems ENAS, GERMANY and 5 Fraunhofer Institute for Cell Therapy and Immunology, GERMANY

T095.c HIGH THROUGHPUT SAMPLE DISCRETIZATION, REAGENT INTEGRATION, AND CONTROLLED RELEASE FOR MULTIPLEXED LOOP-MEDIATED ISOTHERMAL AMPLIFICATION IN DISPOSABLE THERMOPLASTIC 2D MICROWELL ARRAYS
Supriya Padmanabhan, Imaly Nanayakkara, Ian White, and Don L. DeVoe
University of Maryland, USA

T096.c OPTICAL DNA MAPPING USING NANOCHANNELS FOR IDENTIFICATION OF PLASMIDS CARRYING CARBAPENEMASE BLANDM-1 GENE FROM PATIENTS ADMITTED TO A VIETNAMESE HOSPITAL
Sriram KK1, Maud Nilsson2, Björn Berglund2, Linus Olson3, Hoang Bich Ngoc4, Tran Minh Dien4, Mattias Larsson3, Håkan Hanberger2, Christian Giske3, and Fredrik Westerlund1
1 Chalmers University of Technology, SWEDEN, 2 Linköping University, SWEDEN, 3 Karolinska Institute, SWEDEN, and 4 Vietnam National Children's Hospital, VIETNAM

W093.c A DUAL-HEATER DIGITAL MICROFLUIDIC SYSTEM FOR FAST POLYMERASE CHAIN REACTION WITH SLOPPY TEMPERATURE CONTROL
Liang Wan1, Tianlan Chen1, Haoran Li1, Cheng Dong1, Yanwei Jia1, Pui-In Mak1, and Rui P. Martins1,2
1 University of Macau, CHINA and 2 Universidade de Lisboa, PORTUGAL

W094.c BURIED MICROFLUIDIC CHANNELS WITH OBSERVATION WINDOW FOR A HEAT TRANSFER DETERMINATION BASED ON DNA MELTING CURVE ANALYSIS
Zdenka Fohlerova1, Hanliang Zhu2, Imrich Gablech1, and Pavel Neuzil1,2
1 Central European Institute of Technology, CZECH REPUBLIC and 2 Northwestern Polytechnical University, CHINA

W095.c DNA OPTICAL MAPPING IN REAL TIME
Franziska M. Esmek1, Marlin Therre2, Manja Czech-Sioli2, Nicole Fischer2, Thomas Guenthner2, Adam Grundhoff3, and Irene Fernandez-Cuesta1
1 Universität Hamburg, GERMANY, 2 Institute for Medical Microbiology, GERMANY, and 3 Heinrich-Pette-Institut, GERMANY
INTEGRATION OF ISOTHERMAL MOLECULAR AMPLIFICATION WITH CENTRIFUGAL MICROFLUIDIC PLATFORM AND NANOPARTICLE BASED OPTOMAGNETIC READOUT FOR DETECTION OF *E. coli*

Robert W. Baber¹, Marco Donolato², Mikkel F. Hansen¹, and Jeppe Fock²

¹Technical University of Denmark, DENMARK and ²Blusense Diagnostics ApS, DENMARK

POINT-OF-CARE NUCLEIC ACID SENSORS VIA PAPER-BASED OLGONUCLEOTIDE-TEMPLATED REACTIONS

Robert B. Channon¹, Suraj Pavagada¹, Jason Y.H. Chang¹, Sung Hye Kim¹, David MacIntyre¹,², Phillip R. Bennett¹,², Vasso Terzidou¹,², Danny O’Hare¹, and Sylvain Ladame¹

¹Imperial College London, UK, ²Queen Charlotte’s Hospital, UK, and ³Chelsea & Westminster Hospital, UK

3D PRINTED RASPBERRY PI MICROSCOPY FOR LOW COST MICROFLUIDIC BACTERIAL MOTILITY ANALYSIS

Tai The Diep and Alexander Daniel Edwards

University of Reading, UK

A MICROFLUIDIC MODULE FOR INTEGRATED LYYSIS AND GENETIC MATERIAL DETECTION OF GRAM-POSITIVE AND GRAM-NEGATIVE BACTERIA

Catarina R.F. Caneira¹, Silvia Monteiro², Ricardo Santos², Virginia Chu¹, and João P. Conde¹

¹INESC-MN, PORTUGAL and ²Universidade de Lisboa, PORTUGAL

BACTERIAL IDENTIFICATION BY OPTICAL MAPPING OF GENOMIC DNA IN NANOFUIDIC CHANNELS

My Nyblom¹, Vilhelm Müller¹, Anna Johhning¹,²,³, Marie Wrande⁴, Albertas Dvirnas⁵, Sriram KK¹, Christian G. Giske⁶,⁷, Tobias Ambjörnsson⁵, Linus Sandgren⁵, Erik Kristiansson³, and Fredrik Westerlund¹

¹Chalmers University of Technology, SWEDEN, ²Fraunhofer-Chalmers Centre, SWEDEN, ³University of Gothenburg, SWEDEN, ⁴Uppsala University, SWEDEN, ⁵Lund University, SWEDEN, ⁶Karolinska Institute, SWEDEN, and ⁷Karolinska University Hospital, SWEDEN

FAST ANTIMICROBIAL SUSCEPTIBILITY TESTING OF *E. coli* BY OXYGEN CONSUMPTION MEASUREMENTS IN AN ISOTHERMAL MICRO-INCUBATOR PLATFORM

Yang Liu, Thomas Lehnert, Terry P.N. Baltus, and Martinus A.M. Gijs

École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND

LABEL-FREE BACTERIAL SMARTPHONE DETECTION IN MICRO CAPILLARY FILM ALLOWS RAPID TESTING OF THERAPEUTIC BACTERIOPHAGE SPECIFICITY

Sultan Illya Dönmez, Sarah Needs, Mojgan Rabiey, Helen Osborn, and Alexander Edwards

University of Reading, UK
PATHOGEN DETECTION & ANTIBIOTICS

M103.c MICROFLUIDICS COUPLED MASS SPECTROMETRY REVEALS METABOLIC VARIATIONS DURING MORPHOLOGICAL CHANGES OF BACTERIA UNDER THE IMPACT OF ANTIBIOTICS
Dongxue Zhang and Liang Qiao
Fudan University, CHINA

M104.c RAPID SEPARATION AND DETECTION OF RARE FUNGI SPORES FROM WHOLE BLOOD BASED ON A DUAL-LAYER MICROPOROUS ARRAYED FILTRATION
Wenbo Zhou¹, Yaoping Liu¹, Shuangling Li², Meng Xiao³, Jie Gong⁴, Hang Li⁵, and Wei Wang¹,⁵
¹Peking University, CHINA, ²Peking University First Hospital, CHINA, ³Peking Union Medical College Hospital, CHINA, ⁴Chinese Center for Disease Control and Prevention, CHINA, and ⁵National Key Laboratory of Science and Technology on Micro/Nano Fabrication, CHINA

M105.c USE OF MINIATURIZED DEVICES AND ISOTHERMAL AMPLIFICATION FOR PATHOGEN DETECTION IN THE FIELD
Carlos Manzanas, Xiao Jiang, Julia C. Loeb, John A. Lednicky, and Z. Hugh Fan
University of Florida, USA

T097.c A DROPLET MICROFLUIDICS PLATFORM FOR SCALABLE AND HIGH-THROUGHPUT ISOLATION OF ANTIBIOTIC-PRODUCING MICROBES
Pieter Berden¹,²,³, Camila D. Campos¹,², Rodrigo S. Wiederkehr³, Liesbet Lagae¹,², Tim Stakenborg¹, Jan Michiels²,³, and Maarten Fauvart¹,²,³
¹Imec, BELGIUM, ²KU Leuven, BELGIUM, and ³VIB, BELGIUM

T098.c A MULTIPLEXED ASSAY SYSTEM FOR PATHOGEN DETECTION BASED ON ENCODED MAGNETIC MICROPARTICLES
Young Ki Hahn¹, Ji Hyun Kim², and Honggu Chun²
¹Kyungpook National University, KOREA and ²Korea University, KOREA

T099.c BACTERIAL PATHOGENS DETECTION AND ANTIMICROBIAL RESISTANCE TESTING USING PAPER-BASED DEVICES FOR URINARY TRACT INFECTIONS (UTIS)
Peijun J.W. He¹, Ioannis N. Katis¹, Anto J.U. Kumar¹, Catherine A. Bryant¹, Charles W. Keevil², Bhaskar K. Somani³, Nitin Mahobia², Robert W. Eason², and Collin L. Sones¹
¹University of Southampton, UK and ²University Hospital Southampton NHS Trust, UK

T100.c FISH AND CHIPS-IFAST MICROFLUIDIC DEVICE FOR E. coli O157:H7 CAPTURE AND DETECTION VIA ON-CHIP FISH ASSAY
Pablo Rodriguez-Mateos¹, Celina F. Rodrigues², Nuno F. Azevedo², Carina Almeida³,⁴, Charlotte E. Dyer¹, Alex Iles¹, and Nicole Pamme¹
¹University of Hull, UK, ²University of Porto, PORTUGAL, ³National Institute for Agricultural and Veterinary Research, PORTUGAL, and ⁴Biomode SA, PORTUGAL
T101.c MICRO-SCALE IMMUNOMAGNETIC BACTERIAL ENRICHMENT COUPLED TO NANOPLASMONIC SENSING FOR RAPID DETECTION OF PATHOGENS IN WHOLE BLOOD
Alison Burklund¹, Amogha Tadimety¹, and John X.J. Zhang¹,²
¹Dartmouth College, USA and ²Dartmouth-Hitchcock Medical Center, USA

T102.c MOLECULAR DIAGNOSIS OF INFECTIOUS DISEASES FOR POINT-OF-CARE USING DNA HYDROGEL BASED REPID KIT
Hwang-soo Kim, Hyo Yoon Lee, Chan Hee Park, Hynsung Kim, Young Joon Kim, Jin A. Choi, and Sehyun Shin
Korea University, KOREA

T103.c RATIOOMETRIC MULTIPLEXED DIGITAL PCR FOR BACTERIAL IDENTIFICATION AND PHENOTYPIC AST OF POLYMICROBIAL SAMPLES
Fan-En Chen, Alexander Y. Trick, Liben Chen, Joon Soo Park, and Jeff Tza-Huei Wang
Johns Hopkins University, USA

W098.c A MICROFLUIDIC SYSTEM INTEGRATING MEMBRANE FILTRATION AND SURFACE-ENHANCED RAMAN SCATTERING FOR RAPID ANTIBIOTIC SUSCEPTIBILITY TEST
Kai-Wei Chang and Nien-Tsu Huang
National Taiwan University, TAIWAN

W099.c A SELF-CONTAINED INTEGRATED NUCLEIC ACID ANALYSIS CASSETTE FOR MULTIPLEXED BACTERIA DETECTION
Nan Li¹, Minjie Shen¹, and Youchun Xu¹,²
¹Tsinghua University, CHINA and ²National Engineering Research Center for Beijing Biochip Technology, CHINA

W100.c DISCRIMINATING DRUG-RESISTANT BACTERIA USING AI ANALYSIS ON FINE CURRENT CHANGES FROM INNER ION LEAKAGES
Aomi Yoshikawa¹, Takao Yasui¹, Taisuke Shimada¹, Seiji Yamasaki², Kunihiko Nishino², Takeshi Yanagida²,³, Kazuki Nagashima³, Takashi Washio³, Tomoji Kawai³, and Yoshinobu Baba¹,⁴
¹Nagoya University, JAPAN, ²Osaka University, JAPAN, ³Kyushu University, JAPAN, and ⁴National Institute of Advanced Industrial Science and Technology, JAPAN

W101.c FULL INTEGRATION OF SAMPLE PREPARATION AND DNA ANALYSIS FOR FAST MULTIPLEX FIELD-IDENTIFICATION OF BACTERIA
Remco den Dulk¹, Camille Echampard¹, Perrine Viargues¹, Fabienne Gas², Florent Decugis², Mélissa Baqué³, Anne-Gaëlle Bourdat³, Manuel Alessio³, Sandrine Alais³, Jehanne Oudot³, Olivier Riffard³, Cédric Pasquier³, Gregory Wenisch³, and Jean-Maxime Roux¹
¹CEA-Leti, FRANCE, ²CEA-DRF, FRANCE, and ³SDMIS, FRANCE
W102.c MULTIPLEXED OPTICAL DNA MAPPING TO IDENTIFY PLASMIDS AND THEIR RESISTANCE GENES IN FECAL SAMPLES
Sriram KK1, Yii-Lih Lin1, Tsegaye Sewunet2,3, Shoeib Nematzadeh3, Christian G. Giske3,4, and Fredrik Westerlund1
1Chalmers University of Technology, SWEDEN, 2Jimma University, ETHIOPIA, 3Karolinska Institutet, SWEDEN, and 4Karolinska University Hospital, SWEDEN

W103.c PALM-SIZED MAGNETOFLUIDIC PLATFORM FOR BACTERIAL IDENTIFICATION AND ANTIMICROBIAL SUSCEPTIBILITY TESTING OF INFECTED WOUNDS
Johns Hopkins University, USA

W104.c SMARTPHONE-BASED DETECTION OF VIBRIO CHOLERAE IN ENVIRONMENTAL WATER SAMPLES USING PARTICLE DIFFUSOMETRY
Taylor J. Moehling1, Dong Hoon Lee1, Katherine N. Clayton2, Steven T. Wereley1, Tamara L. Kinzer-Ursem1, and Jacqueline C. Linnes1
1Purdue University, USA and 2Omnivis LLC, USA

c - Diagnostics, Drug Testing & Personalized Medicine

M106.c DEVELOPMENT OF A MICROFLUIDIC PLATFORM FOR TARGETED PHAGE SELECTION: IN PURSUIT OF PERSONALIZED COLORECTAL CANCER TREATMENTS
Eduardo J.S. Brás, Pedro G.M. Condelipes, Pedro M. Fontes, Ricardo F. Serrão, Vanda Marques, Marta B. Afonso, Cecilia M.P. Rodrigues, Virginia Chu, João Gonçalves, and João Pedro Conde
Universidade de Lisboa, PORTUGAL

T104.c DROPLET-BASED SINGLE EXTRACELLULAR VESICLE SEQUENCING FOR RARE IMMUNE SUBTYPE DISCOVERY
Jina Ko1, Yongcheng Wang2, Jeremy Gungabeesoon1, Mikael Pittet1, David Weitz2, and Ralph Weissleder1
1Massachusetts General Hospital, USA and 2Harvard University, USA

T105.c QUAD MICRORAFT ARRAYS AS A PLATFORM FOR GENERATING AND SELECTING HUMAN INDUCED PLURIPOTENT STEM CELLS FROM PERIPHERAL BLOOD
Nicole M. Smiddy1, Adriana S. Beltran2, and Nancy L. Allbritton1,3
1University of North Carolina, USA, 2University of North Carolina School of Medicine, USA, and 3North Carolina State University, USA

W105.c DRUG METABOLISM-IN-A-DROPLET: A DIGITAL MICROFLUIDIC APPROACH TOWARD PRECISION MEDICINE
Gowtham Sathyaranayanan, Markus Haapala, and Tiina Sikanen
University of Helsinki, FINLAND
M107.c TRANSPEPTIDASE-MEDIATED IN-SITU COVALENT IMMobilIZATION OF CELL-FREE SYNTHESIZED ENZYME FOR ON-CHIP DIRECTED EVOLUTION
Shingo Ueno1,2, Yui Shirakata1, Mika Shioya1, Shusuke Sato1,2, Shoichi Tsuchiya1, and Takanori Ichiki1,2
1 Innovation Center of NanoMedicine, JAPAN and 2 University of Tokyo, JAPAN

T106.c INTEGRATED AND AUTOMATED MICROFLUIDIC PORTABLE INSTRUMENTATION FOR WHOLE BLOOD SAMPLE PREPARATION IN PROTEOMICS ANALYSIS
Myriam Cubizolles, Remco Den Dulk, Benoit Gilquin, Frederic Revol-Cavalier, Manuel Alessio, Charles-Elie Goujon, Camille Echampard, Gorka Arribalzaga, Yohann Couté, Annie Adrait, Mathilde Louwagie, Patricia Laurent, Fabrice Navarro, Marie-Line Cosnier, and Virginie Brun
University Grenoble Alps, FRANCE

W106.c DRIED BLOOD SPOT RECOVERY: A MICROFLUIDIC TECHNIQUE FOR FAST ELUTION WITHOUT DILUTION
Etienne Coz1, Pierre Garneret1, Didier Chevenne2, Jean-François Benoist2, Fabrice Monti1, and Patrick Tabeling1
1 ESPCI-Paris, FRANCE and 2 Hospital Robert-Debré, FRANCE

W107.c THE INFLUENCE OF SHEAR ON PROTEIN CRYSTALLIZATION UNDER CONSTANT SHEAR CONDITIONS
Sander Stroobants1, Marzena Krzek1, Pierre Gelin1, Iwona Ziemecka1, James F. Lutsko2, Wim De Malsche1, and Dominique Maes1
1 Vrije Universiteit Brussel, BELGIUM and 2 Université Libre de Bruxelles, BELGIUM

M108.c HIERARCHICAL ASSEMBLY OF COLLAGEN MOLECULES INTO TISSUE-ENGINEERED ARTERIAL CONSTRUCTS
Shashi Malladi1, David M. Nieves3, Carloyne Haller2,3, Elliot L. Chaikof2,3, and Axel Guenther1
1 University of Toronto, CANADA, 2 Harvard University, USA, and 3 Beth Israel Deaconess Medical Center, USA

T107.c CELL-ENCAPSULATING CHITOSAN-COLLAGEN HYBRID HYDROGEL CONDUIT FOR PERIPHERAL NERVE REGENERATION
Shun Itai1, Karin Suzuki1, Yuta Kurashina2, Hiroo Kimura1, Tsuyoshi Amemiya1, Kazuki Sato1, Masaya Nakamura1, and Hiroaki Onoe1
1 Keio University, JAPAN and 2 Tokyo Institute of Technology, JAPAN
Regenerative Medicine & Tissue Engineering

T108.c SYNERGISTIC ELECTRO-MECHANICAL TRANSFECTION FOR IN-VIVO REGENERATIVE THERAPY USING ELECTRICALLY-INDUCED MICROBUBBLES

Akiho Hirao¹, Keiko Miwa¹, Yasuhiro Morizumi², and Yoko Yamanishi¹

¹Kyusyu University, JAPAN and ²BEX Co., Ltd., JAPAN

W108.c ENGINEERED ADAPTIVE IMMUNE RESPONSE BY MICROFLUIDICALLY FABRICATED SCAFFOLD IMPARTS REGENERATIVE WOUND HEALING

Maani M. Archang¹, Donald R. Griffin², Westbrook M. Weaver¹, Jason S. Weinstein³, Amber Ruccia⁴, An Chieh Feng⁵, Elias Sideris¹, Jaekyung Koh¹, Dino Di Carlo¹, Tatiana Segura¹,⁴, and Philip O. Scumpia¹,⁵

¹University of California, Los Angeles, USA, ²University of Virginia, USA, ³Rutgers –New Jersey Medical School, USA, ⁴Duke University, USA, and ⁵VA Greater Los Angeles Healthcare System, USA

W109.c VERTICAL NANOSTRUCTURED FLEXIBLE ANTI-PATHOGENIC SCAFFOLDS FOR STEM CELL AND TISSUE ENGINEERING

Sunho Park¹, Hyun-Ha Park², Kahyun Sun², Minho Seong³, Sujin Kim¹, Hoon Eui Jeong², and Jangho Kim¹

¹Chonnam National University, KOREA and ²Ulsan National Institute of Science and Technology (UNIST), KOREA

M109.c A CONVERSATIONAL ROBOTIC LAB ASSISTANT FOR AUTOMATED MICROFLUIDIC 3D MICROTISSUE PRODUCTION

Krzysztof Langer¹, Sandra Jernström², Piaa Mikkonen³, Päivi Östling³, Brinton Seashore-Ludlow², and Haakan N. Joensson¹

¹KTH Royal Institute of Technology, SWEDEN, ²Karolinska Institutet, SWEDEN, and ³University of Helsinki, FINLAND

M110.c A RAPID ENZYMATIC ASSAY FOR NEAR-PATIENT MEASUREMENT OF ADHERENCE TO HIV PRE-EXPOSURE PROPHYLAXIS

Ayokunle O. Olanrewaju¹, Benjamin Sullivan¹, Jane Y. Zhang¹, Andrew T. Bender¹, Tiffany J. Lo¹, Derin Sevenler², Marta Fernandez-Suarez², Paul K. Drain¹, and Jonathan D. Posner²

¹University of Washington, USA, ²Harvard Medical School, USA, and ³Independent Contractor, USA

T109.c REAL-TIME MEASUREMENT OF THE PHYSICAL PROPERTIES OF DNA-LIGAND COMPLEXES

Deniz Pekin¹, Grégoire Perret², Momoko Kumemura³, Laurent Jalabert², Samuel Meignan⁴, Hiroyuki Fujita², Dominique Collard³, and Mehmet C. Tarhan⁵

¹Inserm, FRANCE, ²LIMMS/CNRS-IIS, FRANCE, ³Kyushu Institute of Technology, JAPAN, ⁴Centre Oscar Lambret, FRANCE, and ⁵University Lille, FRANCE

c - Diagnostics, Drug Testing & Personalized Medicine
<table>
<thead>
<tr>
<th>T110.c</th>
<th>SALIVARY MICRORNA CORRECTION AND ANALYSIS USING NANOCELLULOSE FOR DOMICILIARY CANCER DIAGNOSIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author</td>
<td>Naoya Misukami¹, Takao Yasui², Hironao Koga¹, and Yoshinobu Baba¹,³</td>
</tr>
<tr>
<td>Institution</td>
<td>¹Nagoya University, JAPAN, ²Osaka University, JAPAN, and ³National Institute of Advanced Industrial Science and Technology (AIST), JAPAN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>W110.c</th>
<th>RAPID AND PORTABLE PRESUMPTIVE TESTING OF NEW PSYCHOACTIVE SUBSTANCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author</td>
<td>Lauren F. McNeill, Marios Savvos, Oliver B. Sutcliffe, David P. Megson, Patricia E. Linton, and Kirsty J. Shaw</td>
</tr>
<tr>
<td>Institution</td>
<td>Manchester Metropolitan University, UK</td>
</tr>
</tbody>
</table>

d - Fundamentals in Microfluidics and Nanofluidics

Acousto- and Magnetofluidics

<table>
<thead>
<tr>
<th>M111.d</th>
<th>LABEL-FREE SURFACE ACOUSTIC WAVE-BASED EMBEDDED FLOW SENSOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author</td>
<td>Aurore Quelennec, Jason J. Gorman, and Darwin R. Reyes</td>
</tr>
<tr>
<td>Institution</td>
<td>National Institute of Standards and Technology (NIST), USA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T111.d</th>
<th>NEW UNDERSTANDING OF ACOUSTOFLUIDIC DROP DISPENSING FOR DIGITAL MICROFLUIDICS USING SURFACE ACOUSTIC WAVES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author</td>
<td>Elijah Nazarzadeh, Christian Witte, Julien Reboud, and Jonathan M. Cooper</td>
</tr>
<tr>
<td>Institution</td>
<td>University of Glasgow, UK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>W111.d</th>
<th>HIGH THROUGHPUT CONTINUOUS CELL SECRETOME SEPARATION INSIDE MICROSCALE DROPLETS BY MEANS OF ACOUSTOPHORESIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author</td>
<td>Michael Gertl, Dominik Haidas, Alexandre Ratschat, Philipp Suter, Petra S. Dittrich, and Jürg Dual</td>
</tr>
<tr>
<td>Institution</td>
<td>ETH Zürich, SWITZERLAND</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>W112.d</th>
<th>SURFACE ACOUSTIC WAVES PLATFORM FOR TARGETED DELIVERY OF LIPOSOMAL SRNA AND DNA PLASMID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author</td>
<td>Xi King¹, Elijah Nazarzadeh¹, Manlio Tassieri¹, Julien Reboud¹, Jenny K.W. Lam², and Jonathan M. Cooper¹</td>
</tr>
<tr>
<td>Institution</td>
<td>¹University of Glasgow, UK and ²University of Hong Kong, CHINA</td>
</tr>
</tbody>
</table>

d - Fundamentals in Microfluidics and Nanofluidics

Centrifugal Microfluidics

<table>
<thead>
<tr>
<th>M112.d</th>
<th>AN AUTOMATED CENTRIFUGAL MICROFLUIDIC SYSTEM INTEGRATED WITH ETALON SENSOR FILMS FOR RAPID IMAGE ANALYSIS BASED DETECTION OF HORMONES IN MILK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author</td>
<td>Yuting Hou¹, Rohit Mishra², Menglian Wei¹, Nicholas Balasuriya¹, Jens Ducrée², Michael J. Serpe¹, and Jed Harrison¹</td>
</tr>
<tr>
<td>Institution</td>
<td>¹University of Alberta, CANADA and ²Dublin City University, IRELAND</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M113.d</th>
<th>SEPARATION AND CHROMOGENIC DETECTION OF MIXED ILLICIT DRUG SAMPLES FOR POINT-OF-INTERDICTION TESTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author</td>
<td>Killian C. O’Connell, M. Shane Woolf, and James P. Landers</td>
</tr>
<tr>
<td>Institution</td>
<td>University of Virginia, USA</td>
</tr>
</tbody>
</table>
M114.d PHASE-SEPARATED CORE-SHELL HYDROGEL MICROBEADS FROM HOMOGENEOUS MIXED POLYMER SOLUTION BY SIMULTANEOUS GELATION
Yuta Kurashina1,2, Mio Tsuchiya1, Keitaro Kasahara1, and Hiroaki Onoe1
1Keio University, JAPAN and 2Tokyo Institute of Technology, JAPAN

T112.d ARTIFICIAL GUT-ON-A-DISC PLATFORM TO EVALUATE PH SENSITIVE COATINGS OF ORAL DRUG DELIVERY DEVICES
Sriram Thoppe Rajendran1,2, Khorsid Kamguyan1, David Kinahan2, En-Te Hwu1, Line Hagner Nielsen1, Kinga Zör1, and Anja Boisen1
1 Technical University of Denmark, DENMARK and 2Dublin City University, IRELAND

T113.d ON-DISC DROPLET FUSION FOR CELL TRANSFECTION
Yuye Wang, Shiyue Liu, Siu-kai Kong, and Ho-Pui Ho
Chinese University of Hong Kong, HONG KONG

T114.d REVERSIBLE VALVING SOLUTIONS FOR CENTRIFUGAL PLATFORMS WHILE SPINNING
Sarai M. Torres Delgado1, Moritz Huber1, Bahman Moradi1, Jan G. Korvink1, Christof Megnin2, and Dario Mager1
1Karlsruhe Institute of Technology, GERMANY and 2MEMETIS GmbH, GERMANY

W113.d AUTONOMOUS MULTIPLEXED CENTRIFUGAL DEVICE TO EXECUTE FULLY AUTOMATED SANDWICH ELISA WITH MINIMUM REAGENTS LOADING OPERATION
Shunya Okamoto1,2 and Yoshiaki Ukita1
1University of Yamanashi, JAPAN and 2JSPS Research Fellow, JAPAN

W114.d HIGH THROUGHPUT GENERATION OF CALCIUM-ALGINATE MICRO-PARTICLES USING CENTRIFUGAL FORCE-BASED DEVICE FOR CELLS ENCAPSULATION
Thi Huong Le1, Van Thuy Duong1, Huu Lam Phan1, Chanh Trung Nguyen1, Hang Phuong Nguyen1, Hyewon Son1, Seok Oh1, HyoSoek Lee1, Suwon Lee1, Changho Hwang2, and Kyo-in Koo1
1 University of Ulsan, KOREA and 2University of Ulsan College of Medicine, KOREA

W115.d THE CENTRIFUGO-PNEUMATIC LAB-ON-A-DISK PLATFORM: TOWARDS ROBUST FLOW CONTROL FOR LARGER-SCALE FUNCTIONAL INTEGRATION
Lars H. von Deyn and Jens Ducrée
Dublin City University, IRELAND
M115.d AN ELECTRONICALLY-CONTROLLED DIGITAL FERROFLUIDIC ARCHITECTURE FOR SCALABLE AND ADDRESSABLE BIOANALYTICAL OPERATIONS
Wenzhuo Yu, Yilian Wang, Haisong Lin, Nathan Chen, Xu He, Kevin Sun, Dino Di Carlo, and Sam Emaminejad
University of California, Los Angeles, USA

M116.d DROPLET EVAPORATION PROFILES IN DIAMAGNETIC LEVITATION
Vincent Haguet¹, Sergey Semenov², Christian Jeandey¹, and Mickaël Antoni²
¹CEA Grenoble, FRANCE and ²Aix-Marseille Université, FRANCE

M117.d POINT-OF-CARE DIAGNOSIS OF RESPIRATORY SYNCYTIAL VIRUS BY DIGITAL NANOBUBBLE DETECTION
Yaning Liu¹, Haihang Ye¹, Ruth Levitz², HoangDinh Huynh¹, Jeffrey Kahr¹, and Zhenpeng Qin¹,²
¹University of Texas, Dallas, USA and ²University of Texas Southwestern Medical Center, USA

T115.d PATHWAY ENGINEERING USING RAPID-PROTOTYPE DIGITAL MICROFLUIDICS
James M. Perry, Guy Soffer, Ehsan Moazami, and Steve C.C. Shih
Concordia University, CANADA

T116.d IMPROVED DYNAMICS FOR DROPLET ACTUATION BY STRATEGICALLY USING TRIANGULAR COPLANAR ELECTRODES IN DIGITAL MICROFLUIDIC SYSTEM
Mainak Basu, Soumen Das, and Sunando DasGupta
Indian Institute of Technology Kharagpur, INDIA

T117.d ULTRA-LOW-FREQUENCY INDUCED TINY DROPLET TRANSPORTATION WITH SMALL DROPLET-TO-ELECTRODE AREA RATIO IN DIGITAL MICROFLUIDIC PLATFORMS
Mingzhong Li¹, Man-Kay Law¹, Pui-In Mak¹, and Rui P. Martins¹,²
¹University of Macau, CHINA and ²Universidade de Lisboa, Portugal

W116.d DIELECTROPHORETIC TRAPPING OF NON-STATIONARY FLOATING LIQUID MARBLES
Jing Jin, Chin H. Ooi, Kamalalayam R. Sreejith, Dzung V. Dao, and Nam-Trung Nguyen
Griffith University, AUSTRALIA

W117.d INTEGRATED MAGNETOFULLIC ACID PURIFICATION WITH DIGITAL PCR AND HIGH-RESOLUTION MELT FOR BACTERIAL IDENTIFICATION
Johns Hopkins University, USA
M118.d AUTOMATED DROPLET SAMPLING OF ENDOCRINE TISSUE WITH DOWNSTREAM MERGERS FOR COMBINATORIAL MIX-AND-READ ASSAYS
Christopher J. Easley¹, Nan Shi¹, and Juan Hu²
¹Auburn University, USA and ²Scripps Research, USA

M119.d BUBBLE BREAKUP IN AN EXPANSION MEDIATED MICROFLUIDIC CHANNEL
Alinaghi Salari¹,², Jiang Xu¹,², Michael C. Kolios¹,², and Scott Tsai¹,²
¹Institute for Biomedical Engineering, Science and Technology (IBEST), CANADA and ²Ryerson University, CANADA

M120.d DEEP LEARNING GUIDED IMAGE-BASED DROPLET SORTING FOR BIOLOGICAL SCREENINGS
Vasileios Anagnostidis¹, Benjamin Sherlock¹, Jeremy Metz¹, Philip Mair², Florian Holfelder², and Fabrice Gielen¹
¹University of Exeter, UK and ²University of Cambridge, UK

M121.d FEMOTLITER-DROPLET SHOOTING BY MICRO/NANO FLUIDICS FOR DIGITAL MASS SPECTROMETRY
Yuto Takagi, Yutaka Kazoe, and Takehiko Kitamori
University of Tokyo, JAPAN

M122.d LABEL-FREE DROPLET DETECTION THROUGH 3D ELECTRODE-BASED IMPEDANCE SPECTROSCOPY
Hyun Soo Kim¹, Sunghyun Cho¹, Hyesoo Park¹, Kang-Ho Lee¹, Ohwon Kwon¹, Younghak Cho², and Jaewon Park³
¹Korea Institute of Machinery and Materials (KIMM), KOREA, ²Seoul National University of Science and Technology, KOREA, and ³Southern University of Science and Technology, KOREA

M123.d MICRO PERISTALTIC PUMP SYSTEM FOR THE GENERATION OF ARBITRARY DROPLET SEQUENCE AND MULTIPLE-STEP BIOCHEMICAL ASSAYS
Wahida Bhuiyan, Gareth Evans, and Xize Niu
University of Southampton, UK

M124.d NON-NEWTONIAN, HIGH VISCOSITY POLYMER BLENDS WITHIN DROPLET MICROFLUIDIC DEVICES
Polly Sanders, Solweig Chartier, Alexander Iles, Jia Min Chin, and Nicole Pamme
University of Hull, UK

M125.d PARALLEL BACTERIAL ESTERASE ASSAY IN TRAPPED 35 nl-DROPLETS USING pl-EMULSION TRANSPORT
Charmi Chande¹, Jialan Cao¹, Thomas Henkel², Marc Kielpinski², J. Michael Köhler¹, and G. Alexander Groß¹
¹Ilmenau University of Technology, GERMANY and ²Leibnitz Institute for Photonic Technology, GERMANY
M126.d SELECTIVE PARTITIONING OF MICRODROPLETS USING HORIZONTAL MICROVALVES
Mohammad Reza Raveshi1, Sagar N. Agnihotri2, Muhsincan Sesen1, Rajneesh Bhardwaj2, and Adrian Neild1
1Monash University, AUSTRALIA and 2Indian Institute of Technology, Bombay, INDIA

M127.d SIMULTANEOUS MICRODROPLETS GENERATION BY TAIL BREAKUP INDUCED WITH MULTI-BRANCH CHANNEL
Satsuki Kajiya1, Dong Hyun Yoon1, Yoshito Nozaki1, Taisuke Isano2, Hitoshi Yamagata2, Hiroyuki Fujita2, Tetsushi Sekiguchi1, and Shuichi Shoji1
1Waseda University, JAPAN and 2Canon Medical Systems Corp., JAPAN

M128.d TRYPANOFLUIDICS: VARIABILITY OF ENZYMATIC RESPONSE IN POPULATIONS OF TRYPANOSOMES
Simone H. Oldenburg1, Deniz Pekin1, Lionel Buisson1, Thomas Beneyton1, Jean-Christophe Baret1,2, and Loïc Rivière1
1Université de Bordeaux, FRANCE and 2Institut Universitaire de France, FRANCE

T118.d BIOCOMPATIBLE POLYELECTROLYTE MICROCAPSULES GENERATED WITH MAGNETIC WATER-IN-WATER DROPLET MICROFLUIDICS
Maryam Navi1,2,3, Jennifer Kieda1,2,3, Niki Abbasi1,2,3, and Scott Tsai1,2,3
1Ryerson University, CANADA, 2St. Michael’s Hospital, CANADA, and 3Institute for Biomedical Engineering Science and Technology (iBEST), CANADA

T119.d CONTINUOUS FLOW CELL-CELL INTERACTION SCREENING VIA A SEQUENTIAL INJECTOR
Weikang Nicholas Lin1, Shih-Chung Wei2, Matthew Zirui Tay2, Lu Ri2, and Chia-Hung Chen1,2
1National University of Singapore, SINGAPORE, 2Institute for Health Innovation & Technology (iHealthtech), SINGAPORE, 3Singapore Immunology Network (SIgN), SINGAPORE, and 4NUS Graduate School for Integrated Sciences and Engineering, SINGAPORE

T120.d DROP-QPCR: A DROPLET MICROFLUIDIC PLATFORM FOR FAST AND CONTINUOUS-FLOW QPCR ANALYSIS
Ismail Hajji1, Mathilde Richard1, Simon Dumas1, Charles Cavaniol1, Lauriane Geremie1, Marco Serra2, Renault Renault2, Ivan Ferrante2, Jean-Louis Viovy2, Stéphanie Descroix1, and Davide Ferraro1,2
1Institut Curie, FRANCE and 2Università di Padova, ITALY

T121.d HIGH THROUGHPUT SCREENING OF PLASTIC-DEGRADING MICROBES USING DROPLET MICROFLUIDICS
Yuxin Qiao, Dongwei Chen, Haiyan Yu and Wenbin Du
Chinese Academy of Sciences, CHINA
T122.d MASSIVELY-PARALLELIZED PRODUCTION OF FEMTOLITER DROPLETS AND ITS APPLICATION TO SELF-ASSEMBLED NANOPIERCLE CLUSTERS FOR NOVEL METAMATERIALS
Corentin B.M. Tregouet1, Chris L. Kennedy2, Ramakrishna Kotni2, Sofie Kölling3, Johan G. Bomel1, Jasper J.A. Lozeman3, Detlef Lohse4, Albert van den Berg5, Alfons van Blaaderen2, and Mathieu Odijk3
1 Université Rennes 1, FRANCE, 2 Utrecht University, THE NETHERLANDS, and 3 University of Twente, THE NETHERLANDS

T123.d MICRONEEDLE-ASSISTED MICROFLUIDIC FLOW FOCUSING PLATFORM TO GENERATE WATER-IN-WATER MICRODROPLETS IN A HIGH-THROUGHPUT MANNER
Morteza Jeyhani1,2,3, Vaskar Gnywali1,2,3, Niki Abbas1,2,3, Dae Kun Hwang1,2,3, and Scott S.H. Tsai1,2,3
1 Ryerson University, CANADA, 2 St. Michael's Hospital, CANADA, and 3 Institute for Biomedical Engineering, Science and Technology (iBEST), CANADA

T124.d ON-CHIP SAMPLE AUTOMATED DISCRETIZATION, SELECTIVE RETRIEVAL AND CONTROLLABLE METERING UTILIZING MEMBRANE INTEGRATED TRAPS FOR SINGLE-CELL ENCAPSULATION AND SORTING
Hesam Babahosseini1,2, Tom Misteli1, and Don L. DeVoe2
1 National Institutes of Health (NIH), USA and 2 University of Maryland, USA

T125.d ON-DEMAND DROPLET GENERATOR FOR EXTRACTION OF ELECTROKINETICALLY FOCUSED ANALYTES
Vasileios A. Papadimitriou, Stella A. Kruit, Loes I. Segerink, and Jan C.T. Eijkel
University of Twente, THE NETHERLANDS

T126.d SEQUENTIAL FORMATION OF DAUGHTER DROPLETS BY BREAKUP OF MICRODROPLETS INTO BYPASS CHANNEL
Shohei Hattori1, Dong Hyun Yoon1, Yoshito Nozaki1, Taisuke Isano2, Hitoshi Yamagata3, Hiroyuki Fujita4, Tetsushi Sekiguchi5, and Shuichi Shoji1
1 Waseda University, JAPAN and 2 Canon Medical Systems Corp., JAPAN

T127.d SUPERPARAMAGNETIC NANOPIERCLE ENCAPSULATION VIA DROPLET-BASED MICROFLUIDICS FOR TARGETED DRUG DELIVERY SYSTEM
Sakon Rahong1, Ratchanont Sukthai1, Narin Paiboon2, Kunat Suktham2, Annop Klamchuen2, and Suvimol Surassmo2
1 King Mongkut's Institute of Technology Ladkrabang, THAILAND and 2 National Nanotechnology Center (NANOTEC), THAILAND

T128.d WATER EVAPORATION BASED SELF-AQUEOUS TWO-PHASE SYSTEM DROPLET FORMATION
Byeong-Ul Moon, Lidija Malic, Keith Morton, Abdelrahman Elmazalawy, and Teodor Veres
National Research Council Canada, CANADA
W118.d
A PORTABLE DROPLET SORTING PLATFORM WITH INTEGRATED THERMOCAPILLARY SORTING AND CAPACITANCE DETECTING
Yigang Shen¹,², Yaxiaer Yaliku¹,³, Yusufu Aishan¹,², and Yo Tanaka¹,²
¹RIKEN, JAPAN, ²Osaka University, JAPAN, and ³Nara Institute of Science and Technology, JAPAN

W119.d
CLIMBING DROPLETS DRIVEN BY MECHANOWETTING
Ye Wang¹,², Edwin de Jong³, Patrick R. Onck³, and Jaap M.J. den Toonder¹,²

W120.d
CONTROLLED RELEASE OF LIPOSOMAL CARGO IN DOUBLE EMULSIONS TO INDUCE GENE EXPRESSION IN BACTERIA
Ariane Stucki, Petra Jusková, Nicola Nuti, Steven Schmitt, Lucas Armbrrecht, and Petra S. Dittrich
ETH Zürich, SWITZERLAND

W121.d
FABRICATION AND EVALUATION OF ATTOLITER DROPLETS
Risa Takane¹, Hiroto Kawagishi¹, Yasunori Matsui¹, Hiroshi Ikeda¹, and Yan Xu¹,²
¹Osaka Prefecture University, JAPAN and ²Japan Science and Technology Agency (JST), JAPAN

W122.d
IMPROVING DNA LIBRARY PREPARATION FOR NEXT GENERATION SEQUENCING THANKS TO AN INNOVATIVE DROPLET MICROFLUIDIC DEVICE
Davide Ferraro¹,², Marco Serra¹, Thanh Duc Mai¹,², Almut Eisele¹, Leïla Périé¹, Jean-Louis Viowy¹, and Stephanie Descroix¹
¹Institut Curie, FRANCE, ²University of Padova, ITALY, and ³Institut Galien de Paris-Sud, FRANCE

W123.d
MICRODROPLET ARRAY CONCENTRATION WITH SIZE-TRIGGERED RELEASE SYSTEM
Piangrawee Santivongskul¹, Mao Fukuyama¹,², and Akihide Hibara¹
¹Tohoku University, JAPAN and ²Japan Science and Technology Agency (JST), JAPAN

W124.d
MULTIPLEXING ANTIBIOTIC SCREENING IN DROPLET MICROFLUIDICS USING AN OPTOFLUIDIC PLATFORM
Sundar Hengoju¹,², Lisa Mahler¹, Oksana Shvydkiv¹, Miguel Tovar¹, Miriam Rosenbaum¹,², and Martin Roth¹
¹Hans Knöll Institute, GERMANY and ²Friedrich Schiller University, GERMANY

W125.d
PHOSPHOLIPID EXTRACTION AND PHASE SEPARATION USING DROPLET MICROFLUIDICS
David J. Rowe, Daniel J. Health, Anthony D. Postle, James S. Wilkinson, and Goran Z. Mashanovich
University of Southampton, UK
Droplet Microfluidics

W126.d RAYDROP, AN UNIVERSAL DROPLET GENERATOR BASED ON A NON EMBEDDED "CO-FLOW-FOCUSING"
Adrien Dewandre, Javier Rivero-Rodriguez, Youen Vitry, Benjamin Sobac, and Benoit Scheid
Université libre de Bruxelles, BELGIUM

W127.d SILICON CHAMBERS FOR ENHANCED-IMAGING OF DROPLET ARRAYS IN A GRADED TEMPERATURE FIELD
Nicolas Lobato-Dauzier¹,², Robin Deteix¹,², Matthieu Denoual¹,³, Soo Hyeon Kim¹, Hiroshi Toshiyoshi¹,², Hiroyuki Fujita¹, Teruo Fujii¹,², and Anthony J. Genot⁴
¹University of Tokyo, JAPAN, ²LIMMS-IIS/CNRS, FRANCE, ³Greyc – ENSICAEN/CNRS, FRANCE, and ⁴Tokyo City University, JAPAN

W128.d TOWARDS THE DEVELOPMENT OF A DROPLET MICRO-REACTOR FOR INDUSTRIAL RELEVANT SCREENING IN BIOTECHNOLOGY
Kartik Totlani, Thorben de Riesse, Maxime Bisschops, Walter van Gulik, Michiel Kreutzer, and Volkert van Steijn
Delft University of Technology, THE NETHERLANDS

d - Fundamentals in Microfluidics and Nanofluidics

Electrokinetic Phenomena

M129.d TUNING DETERMINISTIC LATERAL DISPLACEMENT SEPARATION WITH AC ELECTROKINETICS
Victor Calero¹, Pablo Garcia-Sanchez², Antonio Ramos², and Hywel Morgan¹
¹University of Southampton, UK and ²Universidad de Sevilla, SPAIN

M130.d ION CONCENTRATION POLARISATION FOR PARTICLE MESOPOROSITY DIFFERENTIATION
Vasileios A. Papadimitriou, Miguel Solsona, Wouter Olthuis, Albert van den Berg, and Jan C.T. Eijkel
University of Twente, THE NETHERLANDS

T129.d OBSERVATION OF MEMBRANE CHANGES AND VIABILITY OF CELLS IN A PARALLEL ELECTROTHERATION PLATFORM
Kevin Keim, Mohamed Z. Rashed, and Carlotta Guiducci
École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND

W129.d DIELECTROPHORETIC ANALYSIS: A TOOL FOR STUDYING THE IMPACT OF ORGANIC SOLVENTS ON WHOLE-CELL BIOCATALYSTS
Miriam S. Epping, Armin Grundmann, Harald Groeger, and Martina Viehues
Bielefeld University, GERMANY

W130.d "TUNABLE NANOGATE" DEVICE FOR SIZE-SORTING OF NANOPARTICLES
Satoko Fujiwara, Tatsuro Endo, Hideaki Hisamoto, and Kenji Sueyoshi
Osaka Prefecture University, JAPAN
M131.d SIMULATION OF THE MIGRATION OF RIGID NON-SPHERICAL PARTICLES IN CURVED MICRO CHANNELS
Thomas E. Hafemann and Jochen Fröhlich
Technical University Dresden, GERMANY

T130.d A TRANSPORT-REACTION MODEL FOR EXPANDING THE DYNAMIC RANGE OF LATERAL FLOW IMMUNOASSAYS USING REAL-TIME IMAGING
Sathishkumar N. and Bhushan J. Toley
Indian Institute of Science, INDIA

T131.d UNRAVEL THE PHYSICS OF PARTICLE FOCUSING MECHANISMS IN MICROCHANNELS
Marzieh Chaharlang, Brady L. Goenner, and Bruce K. Gale
University of Utah, USA

W131.d OPTIMIZING RESIDENCE TIME DISTRIBUTION IN CAPILLARY-BASED SYSTEMS USING COMPUTATIONAL FLUID DYNAMIC SIMULATIONS
Kirandeep K. Gill¹, Deema A. Masoudi¹, Sughan Narayanasamy¹, Patrick Hester², Pedro Estrela¹, and Nuno M. Reis¹
¹University of Bath, UK and²Lamina Dielectrics Ltd, UK

M132.d STRUCTURAL ANALYSIS OF WATER CONFINED IN NANOCANS
Kazuma Mawatari¹, Jun Shirai¹, Koji Ohara², Shinji Kohara³, Toshio Yamaguchi², Koji Yoshida³, and Takehiko Kitamori¹
¹University of Tokyo, JAPAN, ²Japan Synchrotron Radiation Research Institute, JAPAN, ³National Institute for Materials Science, JAPAN, and ⁴Fukuoka University, JAPAN

M133.d UNRAVELING THE UNEXPECTED CHANNEL-LENGTH-DEPENDENT NANOFLUIDIC SALINITY GRADIENT POWER: EXPERIMENTS AND MODELING
Li-Hsien Yeh and Po-Hsien Peng
National Taiwan University of Science and Technology, TAIWAN

T132.d THERMAL DIFFUSIVITY MEASUREMENT IN NANOCHEL BY PHOTOTHERMAL OPTICAL PHASE SHIFT
Kazuma Mawatari, Tokio Sato, and Takehiko Kitamori
University of Tokyo, JAPAN

W132.d EFFECT OF PORE SIZE ON SLIP FLOW IN MICRO- AND NANO-POREUS MEDIA
Md Minhajul Islam and D. Jed Harrison
University of Alberta, CANADA
POSTER PRESENTATIONS

Nanofluidics/Nanoﬂuidic Phenomena

W133.d THERMAL AND ELECTROKINETIC EFFECT ON DIFFUSIOOSMOSIS-DRIVEN IONIC TRANSPORT THROUGH NANOPORES
Jongwan Lee1, Kyunghun Lee1, Cong Wang2, Dogyeong Ha1, Jungyu Park2, and Taesung Kim1
1Ulsan National Institute of Science and Technology (UNIST), KOREA and 2Sogang University, KOREA

Platforms Based on Capillary Forces

M134.d A HYDROGEL MICRONEEDLE PATCH FOR CONTINUOUS MONITORING OF GLUCOSE FROM INTERSTITIAL FLUID
Somayeh Ramezanian and Jacqueline C. Linnes
Purdue University, USA

M135.d ENABLING RHEOLOGICAL ANALYSIS OF COMPLEX FLUIDS AT THE POINT-OF-NEED
Jose C. Contreras-Naranjo and Victor M. Ugaz
Texas A&M University, USA

M136.d POINT-OF-CARE 2DPN ELISA WITH AUTOMATED ENHANCED DETECTION OF AMPLIFIED NUCLEIC ACIDS
Kristin M. Byers1, Anna R. Bird1, Hyundae Cho2, and Jacqueline C. Linnes1
1Purdue University, USA and 2Crosslife Technologies Inc., USA

T133.d 3D PRINTED DOMINO CAPILLARIC CIRCUITS WITH INTEGRATED REAGENTS AND SAMPLE AUTONOMOUS ALIQUOTING FOR DIAGNOSTICS
Oriol Ymbern, Arya Tavakoli, Mohamed Yafia, Andy Ng, and David Juncker
McGill University, CANADA

T134.d ADVANCES IN FLUID CONTROL TECHNIQUES FOR PAPER BASED MICROFLUIDIC DEVICES (MICROPADS)
Aditya R. Jangid, E. Brandon Strong, Carsten Knutsen, Jay T. Wells, Megan L. Mitchell, Brittany Lore, Nick Tod, Emiliano Escamilla, Andres W. Martinez, and Nathaniel W. Martinez
California Polytechnic State University, USA

T135.d EVAPORATION FLOW: ANALYSIS THAT IS INDEPENDENT OF HUMIDITY AND TEMPERATURE
Marta Orlowska1, Bin Guan1, Rossen Sedev1,2, and Craig Priest1
1University of South Australia, AUSTRALIA and 2Curtin University, AUSTRALIA

T136.d PORTABLE UV ADSORPTION BASED HIGHLY SENSITIVE DETECTION OF HEMOGLOBIN ON PLASTIC MICROFLUIDIC CHIP
Wei Wang, Kay Khine Maw, WeiDong Zhou, and ZhiPing Wang
Singapore Institute of Manufacturing Technology (A*Star), SINGAPORE
W134.d 3D-PRINTED PASSIVE GRADIENT GENERATORS
Cesar Parra-Cabrera, Hans Van Cauteren, Clement Achille, Ruben Dochy and Rob Ameloot
KU Leuven, BELGIUM

W135.d DEVELOPMENT OF LASER-CUT MICROFLUIDIC PAPER-BASED ANALYTICAL DEVICE WITH SUCRose VALVE FOR AUTOMATED COMPETITIVE ELISA OF AFLATOXIN B1
Sumamal Charernchai¹, Miyuki Chikae¹, Wanida Wonsawat², Hirose Daisuke¹, Phan T. Tue³, and Yuzuru Takamura¹
¹Japan Advanced Institute of Science and Technology (JAIST), JAPAN,
²Suan Sunandha Rajabhat University, THAILAND, and
³Tokyo Institute of Technology, JAPAN

W136.d MERGING 3D PRINTING WITH PAPER-BASED MICROFLUIDIC DEVICES (MICROPADS)
E. Brandon Strong, Aditya R. Jangid, Siddharth Prabhu, Megan L. Mitchell, Jonah Holbrook, Jacqueline Chuang, Oscar Mercado, Bo Liu, Andres W. Martinez, and Nathaniel W. Martinez
California Polytechnic State University, USA

W137.d SYNTHETIC MICROFLUIDIC PAPER WITH SUPERIOR FLUORESCENT SIGNAL READOUT
Weijin Guo, Jonas Hansson, and Wouter van der Wijngaart
KTH Royal Institute of Technology, SWEDEN

M137.d BOUNDARY LAYER MODIFICATION FOR A MICROTESLA ROTOR PUMPING OF NON-NEWTONIAN FLUIDS
Jessica Hallgath and Joe Fujiou Lo
University of Michigan, USA

M138.d DIRECT IMAGING OF CHANNEL CROSS-SECTION FOR INVESTIGATING INERTIAL FOCUSING DYNAMICS IN A CURVED CHANNEL
Jian Zhou and Ian Papautsky
University of Illinois, Chicago, USA

T137.d A FACILE AND ROBUST METHOD FOR THE PREPARATION OF QUASI-DOUBLE EMULSIONS USING A HIGH-DENSITY MICROWELL ARRAY
Yin Wu, Xu Cui, Zongwei Zhang, and Gang Li
Chongqing University, CHINA

T138.d LATERAL FOCUSING IN VISCOELASTIC FLOW IN SPIRAL CHANNELS
Hua Gao, Jian Zhou, and Ian Papautsky
University of Illinois, Chicago, USA
INVESTIGATION ON VON WILLEBRAND FACTOR (VWF) PROTEOLYSIS BY ADAMTS13 ON-A-CHIP
Amid Shakeri and Tohid F. Didar
McMaster University, CANADA

SPATIOTEMPORALLY GENERATED MICROFLUIDS WITH THE AID OF HIGH-SPEED FLOW CONTROL
Yusuke Kasai, Makoto Saito, Shinya Sakuma, and Fumihito Arai
Nagoya University, JAPAN

CUSTOMIZABLE WORLD-TO-CHIP INTERFACE IN COMBINATION WITH MULTIPHASE MICROFLUIDICS EXPANDING THE APPLICATION RANGE OF A LAB-ON-CHIP PLATFORM
Hannah Bott, Franz Lärmer, and Jochen Hoffmann
Robert Bosch GmbH, GERMANY

HIGH-YIELD PARALLEL ASSEMBLY OF SINGLE SPHERE ON GEOMETRICALLY DESIGNED ADHESIVE POLYMER-POST
Junghyun Bae, Seojoon Kim, and Wook Park
Kyung Hee University, KOREA

POST-PROCESSING COMPATIBLE PACKAGING METHOD FOR CMOS OPTO-NANOFLUIDIC CHIP
Jaehwan Kim, Huaiyu Meng, and Rajeev J. Ram
Massachusetts Institute of Technology, USA

ENABLING COST-EFFECTIVE GLASS MICROFLUIDICS FOR LIFE SCIENCES: THE EXAMPLE OF A COMPLETE SEQUENCING DEVICE FABRICATED AT WAFER SCALE
Sarah Heub1, Rita Smajda1, Guy Voirin1, Gilles Weder1, Anke Sanz-Velasco1, Tobias Bauert2, Alexis Tzannis2, Raphael Pugin1, and Michel Despont1
1CSEM, SWITZERLAND and 2IMT AG, SWITZERLAND

INTEGRATION OF POROUS SILICON-BASED OPTICAL APTASENSORS IN A 3D-PRINTED MICROFLUIDIC PLATFORM FOR PROTEIN DETECTION
Sofia Arshavsky-Graham1,2, Niklas-Maximilian Epping3, Anton Enders3, Thomas Schepers2, Janina Bahmann2, and Ester Segal1
1Technion – Israel Institute of Technology, ISRAEL and 2Leibniz Universität Hannover, GERMANY

RAPID PDMS-GLASS BONDING USING ARGON PLASMA JET TOWARDS AUTOMATIC CHIP FABRICATION
Shih-Chi Chuang and Chia-Hung Dylan Tsai
National Chiao Tung University, TAIWAN
W140.e FABRICATION OF PMMA MICROFLUIDIC DEVICES INTEGRATED WITH POROUS PETE MEMBRANES FOR RELIABLE CYTOTOXICITY TESTS OF DRUGS
Thao Nguyen1, Su Hyun Jung1, Min Seok Lee1, Tae-Eun Park1, Suk-kyun Ahn2, and Joo H. Kang1
1Ulsan National Institute of Science and Technology (UNIST), KOREA and
2Pusan National University, KOREA

W141.e PDMS BONDING WITHOUT O2 PLASMA TREATMENT
Haruka Oda and Shoji Takeuchi
University of Tokyo, JAPAN

M142.e 3D FABRICATED PNEUMATIC GAIN VALVES FOR INTEGRATED LOGIC CONTROLLERS
Hsiang-Chih Yang, and Yu-Chuan Su
National Tsing Hua University, TAIWAN

M143.e STAINLESS MICROFLUIDIC PROBE WITH 2D-ARRAY APPERTURES
Shogo Kamiya, Koki Takahashi, Hidekuni Takao, Fusao Shimokawa, and Kyohei Terao
Kagawa University, JAPAN

T142.e HIGH-THROUGHPUT, LARGE-SCALE AND ULTRA-LOW PROTEIN CONSUMPTION: A NOVEL DROPLET-BASED PROTEIN CRYSTALLIZATION SYSTEM
Hui-Feng Wang1, Jian-Bo Chen2, Sheng Ye1, and Qun Fang1
1Zhejiang University, CHINA and
2Hangzhou Jieijing Biotechnology Co., Ltd, CHINA

T143.e VALVES AND PUMPS USING COLLAGEN-BASED TUBULAR CONSTRUCTS
Kelvin Chow, Nima Vaezzadeh, and Axel Günther
University of Toronto, CANADA

W142.e FROM "DIGITAL" TO "ANALOGUE" PUMPING: COMPLEMENTING AN EXISTING LAB-ON-CHIP ARCHITECTURE WITH NOVEL MICROFLUIDIC PUMPING METHODS
Hannah Bott1, Franz Lärmer1, Roland Zengerle2, and Jochen Hoffmann1
1Robert Bosch GmbH, GERMANY and
2University of Freiburg, GERMANY

W143.e MULTIFUNCTIONAL FEMTO-PIPETTE IN OPEN MICROFLUIDICS
Eleonoor Verlinden1, Masoud Madadelahi1,2, Edin Sarajlic3, Amir Shamloo3, Andreas H. Engel1, Urs Stauffer1, and Murali K. Ghatkesar1
1Delft University of Technology, THE NETHERLANDS, 2Sharif University of Technology, IRAN, and 3SmartTip B.V., THE NETHERLANDS
M144.e A FLEXIBLE PLATFORM WITH INKJET-PRINTED ORGANIC ELECTROCHEMICAL TRANSISTORS INTEGRATED IN MICROFLUIDICS FOR SELECTIVE ION DETECTION
Silvia Demuru, Brince P. Kunnel, and Danick Briand
École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND

M145.e ADDITIVE MANUFACTURING OF MULTILAYERED MICROFLUIDIC DEVICES WITH DENSELY PACKED MICROSCALE FEATURES
Chia-Heng Chu, Enerelt Buretugs, Jacob M. Owens, Ruxiu Liu, Dohwan Lee, and A. Fatih Sarioglu
Georgia Institute of Technology, USA

M146.e ARRAY OF SOFT OR HARD MAGNETIC MICROTRAPS BASED ON COMPOSITE POLYMER NOVEL TECHNOLOGY
Lucie Descamps1, Samir Mekkaoui1, Emmanuelle Laurenceau1, Marie-Charlotte Audry1, Jessica Garcia2, Léa Payen2, Damien Le Roy3, and Anne-Laure Deman1
1Lyon Institute of Nanotechnology, FRANCE, 2Hospices Civils de Lyon, FRANCE, and 3Institut Lumière Matière, FRANCE

M147.e BULK SYNTHESIS OF HYDROGEL ANISOTROPIC MICROPARTICLES WITH DEGASSED REPLICA MOLDING LITHOGRAPHY
Hyeon Ung Kim, Yong Jun Lim, Nak Jun Lee, Hyun Jee Lee, and Ki Wan Bong
Korea University, KOREA

M148.e DEVELOPMENT OF A LARGE-AREA TALL MICRONEEDLE ARRAY SKIN PATCH WITH RADIATION: A NEW DESIGN AND ITS ASSESSEMENT FOR A LONG-TERM TRANSDERMAL DRUG DELIVERY
Ki-Hwan Nam1, Chan Bae Jeong1, Dong-Uk Kim1, Youn-Mook Lim2, and Ki Soo Chang1
1Korea Basic Science Institute, KOREA and 2Korea Atomic Energy Research Institute (KAERI), KOREA

M149.e FLEXIBLE, TRANSPARENT, SUB-100 μM MICROFLUIDIC CHANNELS WITH FDM 3D-PRINTED THERMOPLASTIC POLYURETHANE
Matt D. Nelson, Nirupama Ramkumar, and Bruce K. Gale
University of Utah, USA

M150.e GRAPHENE-MEDIATED MICRO-PATTERNING OF CONDUCTIVE POLYMERS TOWARD IMPLANTABLE ELECTRODES
Tetsuhiko F. Teshima1, Koji Sakai1, Yoshiaki Kashimura1, Hiroki Miyazako1, Hiroshi Nakashima1, Shingo Tsukada1, Yuko Ueno2, Toshihisa Osaki2, and Shoji Takeuchi2
1Nippon Telegraph and Telephone Corporation, JAPAN and 2University of Tokyo, JAPAN
M151.e LOW-COST AND 3D-PRINTED HOLLOW MICRONEEDLE ARRAYS WITH COMPLEX DESIGNS FOR TRANSDERMAL DRUG DELIVERY APPLICATIONS
Christopher Yeung, Haifong Lin, Shawnus A. Chen, Kimber King, Brian King, Farooq Akhtar, and Sam Emaminejad
University of California, Los Angeles, USA

M152.e MINIATURIZED WRINKLED ELECTRODE WITH 30-FOLD ENHANCEMENT IN ELECTROCHEMICAL SIGNAL
Amanda H. Imamura1,2, Julia Zakashansky2, Emanuel Carrilho1, and Michelle Khine2
1University of São Paulo, BRAZIL and 2University of California, Irvine, USA

M153.e PDMS CURING INHIBITION BY 3D-PRINTED TEMPLATES. WHY? AND HOW TO AVOID IT?
Bastien Venzac1, Shaniang Deng1,2, Shuhan Yang1,2, Aufried Lenferink1, Cees Otto1, and Séverine Le Gac1
1University of Twente, THE NETHERLANDS and 2Tianjin University, CHINA

M154.e RAPID FABRICATION OF A SLIPCHIP DEVICE FOR LOCAL STIMULATION USING DESKTOP SLA PRINTING
Megan A. Catterton and Rebecca R. Pompano
University of Virginia, USA

M155.e SELF-DRIVEN SURFACE-ENHANCED RAMAN SCATTERING MICROFLUIDIC DEVICES FABRICATED BY FEMTOSECOND LASER FOR HG2+ DETECTION
Zhi Yu1, Xiuyun Li1, and Chunlei Guo1,2
1Chinese Academy of Sciences, CHINA and 2University of Rochester, USA

M156.e STREPTAVIDIN–FUNCTIONALIZED HYDROGEL MICROPARTICLES FOR CUSTOMIZABLE MULTIPLEX BIOMOLECULE DETECTION
Yoon Ho Roh, Hyun Jee Lee, and Ki Wan Bong
Korea University, KOREA

M157.e THREE-DIMENSIONAL LIQUID PATTERING WITH MICROMESH STRUCTURE BY 3D PRINTING FABRICATION
Suryong Kim1, Byungjun Lee2, Jihoon Ko1, Youngtaek Kim1, and Noo Li Jeon1
1Seoul National University, KOREA and 2Curiochips, KOREA

T144.e A SANDWICH-STRUCTURED RATION DEVICE BASED ON POLYIMIDE-TRANSFERRED VOLUME SENSOR FOR FLEXIBLE MICROFLUIDIC SYSTEM
Zhihua Pu, Jiaming Ma, Wenwen Li, Xiaochen Lai, Xiao Su, Haixia Yu, and Dachao Li
Tianjin University, CHINA

T145.e A TWO-WAY MEMBRANE-INTEGRATED MICROFLUIDIC DEVICE FOR PERMEATION ASSAYS
Marika Sugimoto, Keisuke Yanagisawa, and Naoki Sasaki
Toyo University, JAPAN
T146.e BIOINSPIRED MICROMECHANICAL INTERLOCKING STRUCTURES FOR ENHANCED ADHERENCE BETWEEN SOFT ELASTOMERIC LAYERS
Navajit S. Baban¹,², Ajymurat Orozaliev¹, Christopher. J. Stubbs², and Yong-Ak Song¹,³
¹New York University, Abu Dhabi, UAE and ²New York University, USA

T147.e DEVELOPMENT OF A LARGE-AREA AND SPHERICAL ARRAY OF POLYMERIC PHOTOVOLTAIC PIXELS FOR ARTIFICIAL VISION
Marta J.I. Airaghi Leccardi, Naïg A.L. Chenais, and Diego Ghezzi
École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND

T148.e DEVELOPMENT OF PZT ACTUATOR ARRAY ON AN ACTIVE-MATRIX OXIDE TFTS FOR SINGLE CELL SPATIAL TRANSCRIPTOME AIMING NEURODEGENERATIVE DISEASE
Rahul Bhardwaj¹, Phan T. Tue², Shinsuke Ishigaki³, Hidetaka Uno⁴, Zhi-Hong Wang⁴, Yoshiaki Ukita⁵, Sadahiro Iwabuchi⁶, Shinichi Hashimoto⁷, Takehiko Oka⁸, Kozo Kawahara⁹, Gen. Sobue⁶, Tsuneo Urisu⁴, Daisuke Hirose¹, and Yuzuru Takamura¹
¹Japan Advanced Institute of Science and Technology (JAIST), JAPAN, ²Tokyo Institute of Technology, JAPAN, ³Nagoya University Grad School of Medicine, JAPAN, ⁴Nagoya University Institute of Innovation for Future Society, JAPAN, ⁵University of Yamanashi, JAPAN, ⁶Kanazawa University, JAPAN, and ⁷World Fusion Inc., JAPAN

T149.e FLOW RATE DETERMINATION IN CAPILLARY-DRIVEN MICROFLUIDICS USING COMBINATORIAL SELECTION OF RESISTORS VIA ELECTROWETTING AND SMARTPHONE CONTROL
Marie L. Salva¹,², Yuksel Temiz¹, Marco Rocca², Yulieth C. Arango¹, Christof M. Niemeyer², and Emmanuel Delamarche¹
¹IBM Research – Zürich, SWITZERLAND and ²Karlsruhe Institute of Technology, GERMANY

T150.e HIGH-VOLUME FABRICATION OF SYLGARD 184 DEVICES FOR SINGLE CELL ANALYTICS
Christina Liedert¹, Benedek Poor², Olli-Heikki Huutunen¹, Johanna Hiitola-Keinänen¹, Sanna Aikio¹, Heli Pessa², Pinja Elomaa², Jussi Hiitunen¹, Päivi Saavalainen², and Leena Hakalahti¹
¹VTT Technical Research Centre of Finland, FINLAND and ²University of Helsinki, FINLAND

T151.e LOW-COST, LARGE-SCALE, CONTINUOUS PRODUCT OF GIANT MAGNETIC MICROPARTICLES, AND CUSTOMIZED FUNCTIONALIZATION
Suk-Heung Song¹, Sujeong Lim¹, Hye Yeon Choi², Gyu Dong Kim², Joo Ho Kim², Yong-Gyun Jung², and Wook Park¹
¹Kyung Hee University, KOREA and ²Ezdiatech Inc., KOREA

T152.e PARTICLE MANIPULATION ON MAGNETIC GRID PATTERN
Fujio Tsumori
Kyushu University, JAPAN
T153.e RAPID AND LOW-COST FABRICATION AND INTEGRATION OF COMPLEX 3D MICROFLUIDIC ARCHITECTURES FOR LAB-ON-BODY APPLICATIONS
Haisong Lin, Christopher Yeung, Yichao Zhao, Shuyu Lin, Bo Wang, Xuanbing Cheng, Zhaqing Wang, Tianyou Cai, Wenzhuo Yu, and Sam Emaminejad
University of California, Los Angeles, USA

T154.e ROLL-TO-ROLL MANUFACTURING OF MICROFLUIDIC CHIPS FOR BIOANALYTICAL APPLICATIONS
Jan Hesse1, Anja Haase1, Dieter Nees1, Stephan Rutloff1, Johannes Gütz1, Pelin Tören-Özgür1, Markus Rumpler1, Martin Smolka1, Georgios Kokkinis2, Günther Kriechhammer2, Daniel Scheidi2, Blanca Wilting3, Ingo Katzmayr3, Max Sonnleitner3, Mirko Lohse4, and Manuel Thesen4
1Joanneum Research FmbH, AUSTRIA, 2Pessl Instruments GmbH, AUSTRIA, 3GENSPEED Biotech GmbH, AUSTRIA, and 4micro resist technology GmbH, GERMANY

T155.e SELF-PROPELLING MICRO SWIMMER WITH CONTROLLABLE MOTION
Cheolheon Park1, Yeongjae Choi2, Hansol Choi2, Seo Woo Song2, Sunghoon Kwon2, and Wook Park1
1Kyung Hee University, KOREA and 2Seoul National University, KOREA

T156.e THE DEVELOPMENT OF A MICROFLUIDIC BLOOD OXYGENATOR WITH FOUR-SIDED GAS TRANSFER CHANNELS
Mohammadhossein Dabaghi1, Neda Saraei1, Gerhard Fusch1, Niels Rochow1, John L. Brash1, Christoph Fusch1,2, and P. Ravi Selvaganapathy1
1McMaster University, CANADA and 2University Hospital Nuremberg, GERMANY

T157.e 3D PRINTING OF FLUORINATED POLYMERS TO MODULATE THE SURFACE WETTING BEHAVIOUR
Patrick Risch, Dorothea Helmer, Frederik Kotz, and Bastian E. Rapp
University of Freiburg, GERMANY

W144.e ULTRA–THIN GLASS MICRO DOME STRUCTURE (GMDS) FOR MULTIDIRECTIONAL CELL OBSERVATION
Yusufu Aishani1,2, Yaxiaer Yalikun1, Satoshi Amaya1, Yigang Shen1,2, and Yo Tanaka1,2
1Biosystems Dynamics Research (BDR), JAPAN and 2Osaka University, JAPAN

W145.e A SIMPLE AND ROBUST FABRICATION METHOD FOR CREATING 3D TAPERED POLYDIMETHYLSILOXANE CHANNELS
Hoon Suk Rho1, Henk-Willem Veltkamp2, Danielle Baptista1, Séverine Le Gac1, and Pamela Habibovic1
1Maastricht University, THE NETHERLANDS and 2University of Twente, THE NETHERLANDS
W146.e APPLICATION OF 3D-PRINTED MICROFLUIDIC DEVICE AND MINIATURE PHOTODETECTION TECHNOLOGY TOWARDS PHOTOMETRY-BASED BIOCHEMICAL ANALYSIS IN DEEP-SEA
Tatsuhiro Fukuba1 and Yuki Sano2
1Japan Agency for Marine-Earth Science and Technology, JAPAN and 2Yokohama City University, JAPAN

W147.e BIOMIMETIC UNDULATED MICROWRINKLES CONSTRUCTION BY ORIENTING MICROPARTICLES IN RESPONSIVE HYDROGEL SHEETS VIA DIELECTROPHORESIS
Min-Yu Chiang, Yu-Chih Lo, and San-Yuan Chen
National Chiao Tung University, TAIWAN

W148.e DUAL-FIBER OPTICAL STRETCHER CONFIGURED FOR SINGLE CELL ROTATIONAL MANIPULATION
Liang Huang, Fei Liang, Peng Zhao, Yongxiang Feng, and Wenhui Wang
Tsinghua University, CHINA

W149.e A CELL-LOSS-FREE CONCAVE MICROWELL ARRAY BASED SIZE-CONTROLLED MULTI-CELLULAR TUMOROID GENERATION FOR ANTI-CANCER DRUG SCREENING
Soo Yeon Jeong, Sang Woo Lee, Tae Hoon Shin, and Gi Seok Jeong
Asan Medical Center, KOREA

W150.e KIRIGAMI-INSPIRED MESH FOR RARE CELL RECOVERY
Yaoping Liu1, Meixuan Zhang1, Han Xu2, Xiaolong Rao3, and Wei Wang1,4
1Peking University, CHINA, 2Peking University Shenzhen Graduate School, CHINA, 3Peking University First Hospital, CHINA, and 4National Key Laboratory of Science and Technology on Micro/Nano Fabrication, CHINA

W151.e LIGHT DRIVEN MASSIVE INTEGRATE GEL ACTUATOR FOR SINGLE CELL MANIPULATION
Yuha Koike1, Yoshiyuki Yokoyama2, and Takeshi Hayakawa1
1Chuo University, JAPAN and 2Toyama Industrial Technology Research and Development Center, JAPAN

W152.e MICROFLUIDIC, HIGHER-THROUGHPUT ICE RECRYSTALLIZATION INHIBITION ASSAY
Prashant Agrawal, Audrey K. Gruneberg, Laurie A. Graham, Peter L. Davies, and Richard D. Oleschuk
Queen’s University, CANADA

W153.e PCB-IMPLEMENTED GRAPHENE ELECTROLYTE-GATED FIELD-EFFECT TRANSISTORS FOR BIOSENSING APPLICATIONS
Sotirios Papamatsialou, Pedro Estrela, and Despina Moschou
University of Bath, UK
W154.e PDMS MICROFLUIDIC DEVICES FABRICATION BY A CYCLIC BIOMACHINING PROCESS
Arrate Santaolalla¹, Yara Alvarez-Braña¹, Gorka Gallastegui¹, Lourdes Basabe-Desmonts¹,², Naiara Rojo¹, and Fernando Benito-Lopez¹
¹University of the Basque Country, SPAIN and
²Basque Foundation of Science, SPAIN

W155.e SACRIFICIAL TEMPLATE REPLICATION-FABRIACTION OF SUSPENDED ARBITRARY THREE-DIMENSIONAL MICROCHANNELS IN FUSED SILICA GLASS
Frederik Kotz¹, Patrick Risch¹, Michael Thiel², Alexander Quick², Semih Sevim³, Joseph Puigmarti-Luis³, Dorothea Helmer³, and Bastian E. Rapp¹
¹University of Freiburg, GERMANY, ²Nanoscribe GmbH, GERMANY and
³ETH Zürich, SWITZERLAND

W156.e STIMULI-RESPONSIVE HYDROGEL INSTRUMENT BASED ON FRAME TRANSFORMATION (SHIFT) BY UTILIZING DEFOCUSING PHOTOLITHOGRAPHY TECHNIQUE
Jinsik Yoon and Wook Park
Kyung Hee University, KOREA

W157.e THE ENCELADUS ORGANIC ANALYZER: INSTRUMENTATION AND METHODS FOR DETECTING TRACE ORGANIC MOLECULES IN OUR SOLAR SYSTEM
Zachary Estlack¹, Md Enayet Razu², Beau Compton², Zachary Duca³, Amanda Stockton³, Matin Golzar³, Anna Butterworth³, Jeremy McCauley³, James New⁴, Jungkyu Kim¹, and Richard A. Mathies⁴
¹University of Utah, USA, ²Texas Tech University, USA,
³Georgia Tech, USA, ⁴University of California, Berkeley, USA, and
⁵University of Kent, UK

M158.e FABRICATION AND EVALUATION OF FLEXIBLE NANOVALVES IN 2D- NANOCHANNELS
Hiroto Kawagishi¹, Shunichi Funano², Yo Tanaka², Shuichi Kawamata³, and Yan Xu¹,³
¹Osaka Prefecture University, JAPAN, ²RIKEN, JAPAN, and
³Japan Science and Technology Agency (JST), JAPAN

M159.e FABRICATION OF NANOCHANNELS WITH EMBEDDED METAL ELECTRODES FOR ACTIVE CONTROL OF ZETA POTENTIAL
Kuanghua Chou, Alexander Eden, David Huber, and Sumita Pennathur
University of California, Santa Barbara, USA

M160.e RAPID STIMULI-RESPONSIVITY OF HYDROGEL MICROFIBER ACTUATOR WITH SURFACE POROUS STRUCTURE
Masahiko Karube and Hiroaki Onoe
Keio University, JAPAN
T158.e HIGH-PERFORMANCE CERAMIC EOF PUMP REALIZED BY MASSIVELY PARALLEL SACRIFICIAL SILICON NANO-PILLAR MOULDING
Lucas J. Kooijman, Yasser Pordeli, Bernard Y. van der Wel, Erwin W. Berenschot, Jan C.T. Eijkel, and Niels R. Tas
University of Twente, THE NETHERLANDS

T159.e LARGE-SCALE NANOPORE ARRAY BASED ON A COST-EFFECTIVE SHRINKAGE PROCESS FOR NANOSIZED TARGET SEPARATION
Yaoping Liu¹, Jingquan Liu²,³, and Wei Wang¹,²
¹Peking University, CHINA, ²National Key Laboratory of Science and Technology on Micro/Nano Fabrication, CHINA, and ³Shanghai Jiao Tong University, CHINA

W158.e A SIMPLE METHOD FOR 3D MULTIMATERIAL NANOSTRUCTURE MANUFACTURING
Benoît X.E. Desbiolles, Arnaud Bertsch, and Philippe Renaud
École Polytechnique Fédérale de Lausanne, SWITZERLAND

W159.e FREESTANDING GRAPHENE CVD GROWTH ON INSULATING SUBSTRATE USING GA CATALYST
Tomoki Tsuji, Kenta Arima, Kazuya Yamamura, and Kentaro Kawai
Osaka University, JAPAN

W160.e INTEGRATING A NANOPORE INTO A MICRO-CHANNELED AFM CANTILEVER FOR THE LOCALIZED DETECTION OF IONS AND BIOMOLECULES
Tilman Schlotter¹, Morteza Aramesh¹, Csaba Forró¹, Livie Drowling-Carter¹, Ines Lüchtfeld², Stephan J. Ihle¹, Ivan Shorubalko³, Vahid Hosseini³, Dmitry Momotenko³, Tomaso Zambelli⁴, Enrico Klotzsch⁵, and Janos Vörös⁶
¹ETH Zürich, SWITZERLAND, ²Empa Dübendorf, SWITZERLAND, and ³Humboldt Universität zu Berlin, SWITZERLAND

M161.e FABRICATION AND CHARACTERIZATION OF FLEXDYM–POLYCARBONATE DEVICES: IMPLEMENTING NEW MATERIALS FOR ORGAN-ON-CHIP TECHNOLOGIES
Alexander H. McMillan¹,², Emma K. Thomée¹,³, Alessandra Dellaquila¹,⁴, and Sasha Cai Lesher-Pérez¹
¹Elvesys Microfluidic Innovation Center, FRANCE, ²KU Leuven, BELGIUM, ³University of Strasbourg, FRANCE, and ⁴University of Bielefeld, GERMANY

T160.e 3D DIFFUSION-INDUCED MICROFABRICATION OF MECHANICALLY HETEROGENEOUS HYDROGEL FOR BIOMEDICAL APPLICATION
Chih-Chen Lin, and Yu-Chuan Su
National Tsing Hua University, TAIWAN
Novel, Smart, and Responsive Materials

T161.e NANOZYME-AMPLIFIED LATERAL FLOW IMMUNOASSAY FOR MOLECULAR SIGNATURE DETECTION OF CARDIOVASCULAR DISEASES
Marta Broto¹, Brian Chen¹, Michael R. Thomas¹, Chris S. Wood¹, Amrit S. Lota², Sanjay Prasada, and Molly M. Stevens¹
¹Imperial College London, UK and ²Royal Brompton Hospital, UK

W161.e ENGINEERED 3D ELECTROOSMOTIC MICROCHANNELS FOR RAPID AND MASS TRANSPORTATION OF BODY FLUIDS IN WEARABLE DEVICES
Shinya Kusama, Kaito Sato, Yuya Matsui, Shotaro Yoshida, and Matsuhiko Nishizawa
Tohoku University, JAPAN

e - Micro- and Nanoengineering

M162.e ANALYZING PEPTIDE ADSORPTION STATES VIA NANOWIRE-EMPLOYED INFRARED SPECTROMETRY
Hiroki Naito¹, Takao Yasui¹, Taisuke Shimada¹, Nobutaka Shioya², Takafumi Shimoaka², Masayoshi Tanaka³, Kazuki Nagasima⁴, Mina Okochi³, Takeshi Yanagida⁵, Takeshi Hasegawa⁶, and Yoshinobu Baba¹
¹Nagoya University, JAPAN, ²Kyoto University, JAPAN, ³Tokyo Institute of Technology, JAPAN, ⁴Kyushu University, JAPAN, ⁵Osaka University, JAPAN, and ⁶National Institute of Advanced Industrial Science and Technology (AIST), JAPAN

M163.e NANOFORESTS GROWN ON MICROPILLARS FOR CARBONYL COMPOUNDS PRECONCENTRATION AND SERS DETECTION
Jie Cheng, Yudong Yang, Haiyang Mao, Yifei Ye, Wenjie Zhao, Xinyu Wei, Yang Zhao, Mingxiao Li, and Chengjun Huang
Chinese Academy of Sciences, CHINA

T162.e FABRICATION OF TiO₂ MICRO-SPIKES AND MICRO-FLOWERS FOR MASSIVELY PARALLEL INTRACELLULAR DELIVERY
Loganathan Mohan¹, Srabani Kar², Balasubramaniam Nandhini¹, Pallavi Gupta¹, Pallavi Shinde¹, Pallab Sinha Mahapatra¹, and Tuhin Subhra Santra¹
¹Indian Institute of Technology, Madras (IITM), INDIA and ²University of Cambridge, London, UK

T163.e STRETCHABLE AND TRANSPARENT SUPERHYDROPHOBIC AND OLEOPHOBIC PDMS THIN FILM WITH HIERARCHICAL STRUCTURES
Chaerin Yu¹, Eungjun Lee², Do Hyun Kim², and Dong-Weon Lee¹
¹Chonnam National University, KOREA and ²Korea Advanced Institute of Science and Technology (KAIST), KOREA
ADDITIVE SURFACE MODIFICATION BY POLYMER THIN FILM FORMATION USING ELECTROSPRAY DEPOSITION APPARATUS WITH A TERNARY ELECTRODE
Yuta Kuwahata1, Hiroaki Takehara1,2, and Takanori Ichiki1,2
1University of Tokyo, JAPAN and 2Innovation Center of NanoMedicine (iCONM), JAPAN

MASKLESS SURFACE PATTERNING BY PLASMA POLYMERIZATION FOR MULTIBIOSENSING APPLICATIONS
Laura Barillas1, Ekaterina Makhneva1, Ihsan Amin1, Klaus-Dieter Weltmann1, Hermann Seitz2, and Katja Fricke1
1Leibniz Institute for Plasma Science and Technology (INP), GERMANY and 2University of Rostock, GERMANY

PRODUCING PERIODIC SEQUENTIAL FLOW BY GRAVITY-DRIVEN MICROFLUIDIC ACTUATORS
Zhenglin Li and Sung-Jin Kim
Konkuk University, KOREA

SURFACE TENSION DRIVEN SWARM ROBOTS FOR EMERGING COORDINATING MOTIONS
Koki Yoshida, Tomoki Hayashi, and Hiroaki Onoe
Keio University, JAPAN

BUBBLE-ASSISTED MICRO / NANOFUIDICS: DEMONSTRATION OF BUBBLE GENRATION AND VALVE FUNCTION
Shun Furukawa, Kazuma Mawatari, and Takehiko Kitamori
University of Tokyo, JAPAN

A MICROFLUIDIC CHIP INTEGRATING IMPEDANCE FLOW CYTOMETRY AND ELECTRIC IMPEDANCE SPECTROSCOPY FOR SINGLE-CELL ELECTRICAL PROPERTY MEASUREMENT
Yongxiang Feng, Peng Zhao, Fei Liang, Liang Huang, and Wenhui Wang
Tsinghua University, CHINA

AN "ENZYME-RESPONSIVE IONIC LIQUID" TOWARD CAPILLARY ARRAY-BASED IMMUNOASSAY MICRODEVICES
Ryoutarou Oishi, Tatsumi Mizuta, Kenji Sueyoshi, Tatsuro Endo, and Hideaki Hisamoto
Osaka Prefecture University, JAPAN

ANALYTE CAPTURE IN AN ARRAY OF FUNCTIONALIZED DROPLETS FOR A REGENERABLE BIOSENSOR
Charles-Louis Azzopardi, Franck Chollet, Jean-François Manceau, and Wilfrid Boireau
University Bourgogne Franche-Comté, FRANCE
M168.f CENTRIFUGAL MICROFLUIDIC PLATFORM COMPRISING AN ARRAY OF BEAD MICROCOLUMNS FOR THE MULTIPLEXED COLORIMETRIC QUANTIFICATION OF INFLAMMATORY BIOMARKERS AT THE POINT-OF-CARE
Ahmad S. Akhtar, Inês F. Pinto, Ruben R.G. Soares, and Aman Russom
KTH Royal Institute of Technology, SWEDEN

M169.f DEVELOPING INTEGRATED CENTRIFUGAL CONVECTIVE PCR DEVICE FOR DETECTION OF DRUG-RESISTANT GENE
Sakiko Ushiro, Masato Saito, Wilfred V. Espulgar, and Eiichi Tamiya
Osaka University, JAPAN

M170.f ELECTRICAL DETECTION OF DEOXYRIBONUCLEASE USING DNA MOLECULES IMMOBILIZED BETWEEN MICROELECTRODES
Takahiro Himuro, Shota Tsukamoto, and Yoji Saito
Seikei University, JAPAN

M171.f ENHANCING THE SENSING PERFORMANCE OF APTAMERIC GFETs FOR INTERLEUKIN-6 DETECTION USING NEGATIVE ELECTRIC FIELD
Zhuang Hao, Yunlu Pan, Cong Huang, and Xuezeng Zhao
Harbin Institute of Technology, CHINA

M172.f IDENTIFYING MULTIPLE VIRAL SPECIES AT A SINGLE PARTICLE LEVEL USING A COMBINATION OF NANOPORES AND MACHINE LEARNING APPROACH
Akihide Arima1, Makusu Tsutsui2, Yoshida Takeshi2, Kazumichi Yokota2, Wataru Tonomura2, Takao Yasui1, Taisuke Shimada1, Tomoko Yamazaki2, Kenji Tatematsu2, Shun’ichi Kuroda2, Masateru Taniguchi2, Takashi Washio2, Tomoji Kawai2, and Yoshinobu Baba1
1 Nagoya University, JAPAN and 2 Osaka University, JAPAN

M173.f INKJET-PRINTED SINGLE-STEP COMPETITIVE IMMUNOASSAY MICRODEVICE FOR THE DETECTION OF CRP
Yuko Kawai1, Masaya Kakuta2, Kenji Sueyoshi1, Tatsuro Endo1, and Hideaki Hisamoto1
1 Osaka Prefecture University, JAPAN and 2 Sysmex Corporation, JAPAN

M174.f MULTIPLEXED DETECTION OF PLANT HEALTH BIOMARKERS
Eduardo J.S. Brás1,2, Ana M. Fortes2, Virginia Chu1, Pedro Fernandes2, and João P. Conde1,2
1 Institute of Nanoscience and Nanoscience and Nanotechnology, PORTUGAL and 2 Universidade de Lisboa, PORTUGAL
M175.f PRIMARY HAEMOSTASIS ASSESSMENT BY REAL-TIME DIRECT SENSING OF PLATELET-COLLAGEN INTERACTIONS UNDER DYNAMICS IN A BROAD SHEAR RATE SPECTRUM WITH MICROACOUSTIC BIOSENSOR APPROACH
Aleksandr Oseev1, Fabien Remy-Martin1, Thomas Lecompte2, Alain Rouleau1, Guillaume Mourey1,3,4, Jean-François Manceau1, Céline Élie-Caille1, Wilfrid Boireau1, Emmanuel de Maistre5, and Thérèse Leblois1
1Université de Bourgogne Franche-Comté, FRANCE, 2Geneva University, SWITZERLAND, 3University Hospital of Besançon, FRANCE, 4Laboratoire de Biologie Médicale et de Greffe, FRANCE, and 5Centre Hospitalier Universitaire de Dijon, FRANCE

M176.f RETROREFLECTIVE OPTICAL IMMUNOSENSING BASED ON THE BIOSPECIFIC PARTICLE MOVEMENT AND TIME-LAPSE IMAGING IN MICROCHANNEL
Kyung Won Lee, Kwan Young Jeong, Ka Ram Kim, Hyeong Jin Chun, and Hyun C. Yoon
Ajou University, KOREA

M177.f SMARTPHONE-INTEGRATED IMMUNOSENSING BASED ON THE WAVELENGTH FILTERING FROM CHROMOGENIC ENZYMATIC REACTION
Kwan Young Jeong, Saemi Kim, Kyung Won Lee, Ka Ram Kim, Hyeong Jin Chun, and Hyun C. Yoon
Ajou University, KOREA

M178.f SWEAT LACTIC ACID MONITORING SYSTEM USING PLASTER-BASED SAMPLING DEVICE FOR APPLICATION IN INTENSIVE CARE UNIT
Yusuke Suzuki1, Akiko Hosoyama2, Kenichiro Morisawa2, Yasuhiko Taira2, and Hiroyuki Kudo1
1Meiji University, JAPAN and 2St. Marianna University School of Medicine, JAPAN

M179.f USE OF A GLASS FIBRE MEMBRANE (GF/DVA) TOWARDS THE DEVELOPMENT OF A LATERAL FLOW ASSAY FOR DETECTION OF TRICLOSAN IN RIVER WATER
Samantha Richardson, Alexander Iles, Jeanette M. Rotchell, Mark Lorch, and Nicole Pamme
University of Hull, UK

T165.f A DNA NANOTECHNOLOGY TOOLBOX FOR MIX-AND-MATCH BIOSENSOR DESIGN
Iene Rutten, Saba Safdar, Karen Ven, Devin Daems, Dragana Spasic, and Jeroen Lammertyn
KU Leuven, BELGIUM

T166.f AN ON-DEMAND HIGH-INTEGRATED MICROFLUIDIC DROPLET PLATFORM FOR SENSITIVE AND RAPID SERS DETECTION OF EPSTEIN-BARR VIRUS DNA
Wen Wu, Ya-Ning Wang, Wen-Shu Zhang, Wen-Qi Ye, Yue Wang, and Zhang-Run Xu
Northeastern University, CHINA
T167.f ANGULAR-BASED MEASUREMENT IN 3D PAPER-BASED ANALYTICAL DEVICES
Dong-Ho Kim, Seong-Geun Jeong, Byungjin Lee, Jaeseong Kim, and Chang-Soo Lee
Chungnam National University, KOREA

T168.f CONTINUOUS TISSUE-SELEX UTILIZING A PRE-SCREENING PROCESS FOR MEMBRANE TARGETING APTAMERS ON AN INTEGRATED MICROFLUIDIC SYSTEM
Yi-Cheng Tsai and Gwo-Bin Lee
National Tsing Hua University, TAIWAN

T169.f SLIPSZYMES: LUBRICANT-INFUSED DNAZYME SURFACES FOR DETECTION OF PATHOGENIC BACTERIA IN COMPLEX FLUIDS
Hanie Yousefi1, Sahar E. Samani2, Akansha Prasad2, Amid Shakeri2, Hsuan-Ming Su2, Carlos D.M. Filipe2, and Tohid F. Didar2
1University of Toronto, CANADA and 2McMaster University, CANADA

T170.f ELECTRICAL DETECTION OF THE MECHANICAL ALTERATION OF SICKLING RED BLOOD CELLS WITHIN A MICROFLUIDIC CAPILLARY NETWORK
Xu Tieying1, Maria Lizzarralde2, Jean Roman1, Wassim El Nemem2, Bruno Le Pioufle1, and Olivier François1,2
1ENS Paris-Saclay, FRANCE, 2INTS, FRANCE and 3ESYCOM, FRANCE

T171.f FLEXIBLE MICROFLUIDIC NETWORKS ENABLING RAPID PROTOTYPING OF NOVEL SURFACE CHEMISTRIES IN LAB-ON-CHIP
Francesca Costantini1, Lorenzo Iannascoli1, Nicola Lovechio1, Mara Mirasoli2, Giampiero de Cesare1, Domenico Caputo1, and Augusto Nascetti1
1Sapienza University of Rome, ITALY and 2University of Bologna, ITALY

T172.f IMMUNOASSAYS BASED ON HOT ELECTRON INDUCED ELECTROCHEMILUMINESCENCE ON DISPOSABLE CELL CHIPS WITH PRINTED ELECTRODES
Nur-E-Habiba1,2, Kalle Salminen2, Päivi Grönroos2, Esko Kauppinnen1, Veikko Sariola1, and Sakari Kulmala2
1Tampere University, FINLAND and 2Aalto University, FINLAND

T173.f ISOHERMAL NANOPORE DNA SENSING USING DIFFUSION CURRENT
Wei-Lun Hsu1, Soumyadeep Paul1, Zhen Gu2, Ya-Lun Ho1, Jean-Jacques Delaunay1, Yi-Lun Ying2, Yi-Tao Long2,3, and Hirofumi Daigui1
1University of Tokyo, JAPAN, 2East China University of Science and Technology, CHINA, and 3Nanjing University, CHINA

T174.f OPTICAL BIOSENSING ON A SMART HANDSET: NON-SPECTROSCOPIC SENSING PLATFORM BASED ON RETROREFLECTION
Ka Ram Kim, Hyeong Jin Chun, Kyung Won Lee, Kwan Young Jeong, and Hyun C. Yoon
Ajou University, KOREA
POSTER PRESENTATIONS

Biosensors

T175.f QUANTUM-LIMITED 2D SENSORS FOR PH AND BIOSENSING
Arvind Balijepalli1, Son T. Le1,2, Harish C. Pant1, and Curt A. Richter1
1National Institute of Standards and Technology (NIST), USA,
2Theiss Research, USA, and 3National Institutes of Health (NIH), USA

T176.f SENSITIVE REAGENT-FREE ELECTROCHEMICAL DETECTION OF HORMONE CORTISOL USING HYBRID NANOCOMPOSITE-BASED SENSORS
Bo Wu, Ye Liu, Yi-Chieh Wang, and Li-Jing Larry Cheng
Oregon State University, USA

T177.f SURFACE ENHANCED RAMAN SCATTERING ACTIVE CHIPS FOR MYCOTOXIN DETECTION IN FOOD MATRICES
Alessandro Chiado, Chiara Novara, Niccolò Paccotti, Paola Rivolo, Francesco Geobaldo, and Fabrizio Giorgis
Politecnico di Torino, ITALY

T178.f THREE-DIMENSIONAL PAPER-BASED DEVICE WITH INTEGRATED TIMER FUNCTION FOR PERSONAL IMMUNOASSAY APPLICATIONS
Chung-An Chen, Chiao-Wen Chen, Shi-Jia Chen, Chin-Chou Chu, and Chien-Fu Chen
National Taiwan University, TAIWAN

T179.f UTILIZING A LIGHT IMAGE ARRAY WITH VARYING LIGHT INTENSITIES IN OPTICALLY-INDUCED DIELECTROPHORESIS (ODEP)-BASED MICROFLUIDIC SYSTEM FOR A CULTURE-FREE SCREEN OF BACTERIA WITH DIFFERENT RESPONSES TO ANTIBIOTICS TREATMENT
Po-Yu Chu1, Chih-Yu Chen1, and Min-Hsien Wu1,2
1Chang Gung University, TAIWAN and 2Chang Gung Memorial Hospital, TAIWAN

W165.f A NOVEL HANDHELD MICRO-CAPILLARY BIOSENSOR FOR SALIVARY CORTISOL
Young J. Kim, Wan J. Kim, and Bongjin Jeong
Electronics and Telecommunications Research Institute, KOREA

W166.f A NOVEL OXYGEN NANOSENSOR FOR IN VITRO MICROENVIRONMENT MONITORING IN MESENCHYMAL STEM CELL CULTURE
Yunjie Hao1,2, Manohar Prasad Koduri1,2, Fan Gang Tseng1,3, James Henstock2, John A. Hunt2,4, and Judy Curran2
1National Tsing Hua University, TAIWAN, 2University of Liverpool, UK, 3Academia Sinica, TAIWAN, and 4Nottingham Trent University, UK

W167.f AN INTEGRATED CAPILLARY-DRIVEN IMPEDIMETRIC BIOSENSOR FOR MICROPARTICLE-LABELED IMMUNOASSAY
Ali Khodayari Bavil1, Drago Sticker2, Peter Ertl2, and Jungkyu Kim3
1Texas Tech University, USA, 2Vienna University of Technology, AUSTRIA, and 3University of Utah, USA
W168.f ASSESSMENT OF CARDIOMYOCYTE MATURITY BY MEASURING CHANGES IN CONTRACTILE FORCE ACCORDING TO DRUG CONCENTRATION
Jong Yun Kim and Dong-Weon Lee
Chonnam National University, KOREA

W169.f CYTOTOXICITY ASSAYS WITH SINGLE CELL RESOLUTION BASED ON SINGLE CELL ADHESION DOT ARRAYS (SCADA)
Maite Garcia-Hernando1, Alba Calatayud-Sanchez1, Jaione Etxebarria-Elezgarai1, Marian M. de Pancorbo1, Fernando Benito-Lopez1, and Lourdes Basabe-Desmonts1,2
1 University of the Basque Country, SPAIN and 2Basque Foundation of Science, SPAIN

W170.f DIGITAL PHOTOGRAPHY TECHNIQUES IN MICROFLUIDICS: EXPOSURE BRACKETING FOR HIGH DYNAMIC RANGE MAGNETOPHORETIC CYTOMETRY
Ozgun Civelekoglu, Ningquan Wang, Ruxiu Liu, Mert Boya, Tevhide Ozkaya-Ahmadov, and A. Fatih Sarioğlu
Georgia Institute of Technology, USA

W171.f ENHANCED RAMAN AND FLUORESCENCE SIGNALS BY HIGH-ASPECT-RATIO NANOCORRUGATED PARTICLES FOR LIQUID-BIOPSY MIRNA DETECTION
Kuan-Hung Chen1, Meng-Ju Pan1, and Fan-Gang Tseng1,2
1 National Tsing Hua University, TAIWAN and 2 Academia Sinica, TAIWAN

W172.f HIGH-PERFORMANCE BIOELECTRONIC NOSE BASED ON OLFACTORY RECEPTOR-INCORPORATED NANODISC FOR THE DETECTION OF DEATH-ASSOCIATED ODOR
Hyun Seok Song1, Heehong Yang2, Jungkyun Oh2, Jyongsik Janf2, and Tai Hyun Park2
1 Korea Institute of Science and Technology (KIST), KOREA and 2Seoul National University, KOREA

W173.f INTEGRATED MICROFLUIDIC DEVICE FOR UNIVERSAL SECRETORY IMMUNOPHENOTYPING STUDIES FOR ADHERENT AND NON-ADHERENT CELLS
Roberto Rodriguez-Moncayo, Rocio J. Jimenez-Valdes, Alan M. Gonzalez-Suarez, and Jose L. Garcia-Cordero
Centro de Investigación y de Estudios Avanzados del IPN, MEXICO

W174.f LAB-ON-A-CHIP BASED ELECTROCHEMICAL DETECTION OF FERRITIN
Mayank Garg1,2,3, Martin G. Christensen1, Alexander Iles3, Amit L. Sharma1,2, Nicole Pamme3, and Suman Singh1,2
1 Academy of Scientific and Innovative Research, INDIA, 2 Central Scientific Instruments Organization, INDIA, and 3 University of Hull, UK

W175.f PRECIPITATION-BASED ENZYMATIC SIGNAL AMPLIFICATION IN HYDROGELS
Nidhi Juthani and Patrick S. Doyle
Massachusetts Institute of Technology, USA
W176.f REAL-TIME PROCESSING OF CODE-MULTIPLEXED COULTER SIGNALS BASED ON A TWO-STAGE DEEP LEARNING STRUCTURE
Ningquan Wang, Ruxiu Liu, Norh Asmare, and A. Fatih Sarioglu
Georgia Institute of Technology, USA

W177.f DEVELOPMENT OF IN-AIR EIS SENSOR ENABLING TO DISTINGUISH IMPEDANCE OF CELL POPULATION AND TIGHT-JUNCTION FORMATION AT AIR-LIQUID INTERFACE
Seungbeom Noh and Hanseup Kim
University of Utah, USA

W178.f SURFACE PLASMON RESONANCE IMAGING ENHANCED BY DIELECTROPHORESIS AND AC ELECTROOSMOSIS
Marion Costella1,3, Marie Frénéa-Robin1, Julien Marchalot1, Julien Moreau2, Oleh Andreiev1,3, Paul Charette3, and Michael Canva3
1 Université Lyon, FRANCE, 2 CNRS, FRANCE, and 3 Université de Sherbrooke, CANADA

W179.f ULTRASENSITIVE MIRNA DETECTION USING TARGET CYCLING AMPIFICATION AND DIGITAL MICROFLUIDICS
Bin Wang, Zhang You and Dahai Ren
Tsinghua University, CHINA

W180.f VERTICALLY SHEATHING LAMINAR FLOW-BASED IMMUNOASSAY USING SIMULTANEOUS DIFFUSION-DRIVEN IMMUNE REACTIONS
Amanzhol Kurmashev1, Seyong Kwon1, Je-Kyun Park2, and Joo H. Kang1
1 Ulsan National Institute of Science and Technology (UNIST), KOREA and 2 Korea Advanced Institute of Science and Technology (KAIST), KOREA

M180.f A DUAL-GATE ALGAN/GAN HEMT BASED PH SENSOR WITH TUNABLE SENSITIVITY
Qi Cheng, Maojun Wang, Ming Tao, Ruiyuan Yin, Yue Li, Nana Yang, Chengchen Gao, Yilong Hao, Wenhua Xu, and Zhenchuan Yang
Peking University, CHINA

M181.f AN ULTRASENSITIVE SENSOR AND ANALYTICAL FRAMEWORK FOR WEARABLE AND MULTIPLEXED DRUG MONITORING APPLICATIONS
Shuyu Lin, Bo Wang, Wenzhuo Yu, and Sam Emaminejad
University of California, Los Angeles, USA

M182.f "CALCIUM-RESPONSIVE IONIC LIQUID" FOR NAKED EYE-BASED MULTIPLEXED ION DETECTION ON A PDMS MICROCHANNEL ARRAY DEVICE
Tatsumit Mizuta, Yusuke Niwa, Kenji Sueyoshi, Tatsuro Endo, and Hideaki Hisamoto
Osaka Prefecture University, JAPAN
M183.1 LIGHT THERAPY DEVICE WITH TRANSEPIDERMAL POTENTIAL-BASED REAL-TIME MONITORING OF SKIN BARRIER RECOVERY
Hajime Konno, Yuina Abe, Shotaro Yoshida, and Matsuhiko Nishizawa
Tohoku University, JAPAN

M184.4 REDUCED GRAPHENE OXIDE-MODIFIED MICROELECTRODE FOR ANTIPSYCHOTIC CLOzapine DETECTION IN FINGER-PRICKED BLOOD
Rajendra P. Shukla¹, Remi Cezelles¹, Deanna L. Kelly², and Hadar Ben-Yoav¹
¹Ben-Gurion University, ISRAEL and
²University of Maryland School of Medicine, USA

M185.1 VOLATILE ODORANT DETECTION BY OLFACTORY RECEPTORS FORMED IN A LIPID BILAYER MEMBRANE
Tetsuya Yamada¹, Koki Kamiya¹, Toshihisa Osaki¹, and Shoji Takeuchi¹,²
¹Kanagawa Institute of Industrial Science and Technology, JAPAN and
²University of Tokyo, JAPAN

T180.1 A DROPLET MICROFLUIDIC-BASED SENSOR FOR MONITORING RIVER NITRATE/NITRITE CONCENTRATIONS
Adrian M. Nightingale¹, Sammer-ul Hassan¹, Brett M. Warren², Kyriacos Makris³, Gareth W.H. Evans¹, Evangelia Papadopoulou², Sharon Coleman¹,², and Xize Niu¹,²
¹University of Southampton, UK and ²SouthWestSensor Ltd, UK

T181.1 AN ULTRA-LOW POWER HIGHLY-SENSITIVE VAPOR SENSOR BASED ON QUANTUM TUNNELING
Aishwaryadev Banerjee, Rugved Likhite, Hanseup Kim, and Carlos Mastrangelo
University of Utah, USA

T182.1 DETECTION OF SWELL/SHRINK BEHAVIOR OF STIMULI-RESPONSIVE HYDROGEL BY SINGLE WALLCARBON NANOTUBE STRAIN SENSOR
Erika Iyama¹, Daisuke Kiriya², and Hiroaki Onoe¹
¹Keio University, JAPAN and ²Osaka Prefecture University, JAPAN

T183.3 MICROFLUIDIC PARTICLE DAM FOR VISUAL AND QUANTITATIVE DETECTION OF LEAD IONS
Gaobo Wang, Lok Ting Chu, Hogi Hartanto, William B. Utomo, Reynard Aaron Pravasta, and Ting-hsuan Chen
City University of Hong Kong, HONG KONG

T184.4 RAPID ON-SITE DETERMINATION OF TOTAL NITROGEN IN WATER USING A PORTABLE ANALYTICAL SYSTEM
Chen Zhao¹,², Longyan Chen², Guowei Zhong², Qiyang Wu¹,², Jinxia Liu², and Xinyu Liu¹
¹University of Toronto, CANADA, ²McGill University, CANADA, and ³University of Pennsylvania, USA
Chemical & Electrochemical Sensors

W181.f **AN ELECTROENZYMATIC SENSOR WITH ENHANCED SENSITIVITY AND SELECTIVITY FOR WEARABLE NUTRIENT MONITORING APPLICATIONS**
Xuanbing Cheng, Bo Wang, Yichao Zhao, and Sam Emaminejad
University of California, Los Angeles, USA

W182.f **ANALYTICAL MICROSYSTEM FOR THE POTASSIUM MONITORING IN WINE MAKING PROCESSES**
Antonio Calvo-López, Ernest Martinez-Bassesdas, Mar Puyol, and Julian Alonso-Chamarro
Autonomous University of Barcelona, SPAIN

W183.f **INELASTIC TUNNELING SPECTROSCOPY MICROMACHINED GAS SENSOR FOR ENVIRONMENTAL APPLICATIONS**
AishwaryaDev Banerjee, Rugved Likhite, Hanseup Kim, and Carlos H. Mastrangelo
University of Utah, USA

W184.f **MICROFLUIDICS UNDER THE SEA: A LAB-ON-CHIP SENSOR FOR IN-SITU MEASUREMENTS OF OCEAN ALKALINITY**
Allison Schaap, Statthys Papadimitriou, Edward Mawji, Socrates Loucaides, and Matthew Mowlem
National Oceanography Centre, UK

W185.f **THREE DIMENSIONAL CARBON MULTIELECTRODE ARRAYS FOR ELECTROCHEMICAL DETECTION OF DOPAMINE IN LOW CONCENTRATIONS**
Joonas J. Heikkinen, Noora Isoaho, Ville Jokinen, and Sami Franssila
Aalto University, FINLAND

f - Sensors and Detection Technologies

M186.f **ABSORBANCE SPECTRA-ACTIVATED DROPLET SORTING FOR HIGH-THROUGHPUT LABEL-FREE CHEMICAL IDENTIFICATION**
Todd A. Duncombe1, Aaron Ponti1, Alice Maurer2, Florian Seebeck2, and Petra S. Dittrich1
1ETH Zürich, SWITZERLAND and 2University of Basel, SWITZERLAND

M187.f **IMPEDANCE SPECTROSCOPY AND OPTICAL IMAGING FOR AUTOMATED MULTIMODAL PALYNOLOGY**
Riccardo Reale1, Adele De Ninni1, Maria A. Brighetti1, Luca Businaro2, Alessandro Travaglini1, Paolo Bisegna1, and Federica Caselli1
1University of Rome Tor Vergata, ITALY and 2CNR Institute for Photonics and Nanotechnologies, ITALY

M188.f **IMPEDANCE-BASED QUANTIFICATION OF PARASITIC VOLTAGE DROPS FOR OPTIMIZING AC ELECTROKINETIC TRAPPING**
Vahid Farmehini1, Walter Varhue1, Armita Salahi2, Jaka Camazar2, Alexandra Hyler2, Rafael Davalos2, and Nathan Swami1
1University of Virginia, USA and 2Virginia Tech, USA
POSTER PRESENTATIONS

M189.f SERS DETECTION OF Aß40 AND ZN2+-Aß40 PEPTIDES ON AN ELECTRODE NANOGAP ENABLED PLATFORM
Katrin H.P. Vu1,2, Ming-Che Lee1,2, Gerhard H. Blankenburg2,4, Yun-Ru Chen1,2, Ming-Lee Chu1, Andreas Erbe1, Leonardo Lesser-Rojas6,7, and Chia-Fu Chou2
1National Tsing Hua University, GERMANY, 2Academia Sinica, TAIWAN, 3National Defense Medical Center, TAIWAN, 4National Taiwan University, TAIWAN, 5Norwegian University of Science and Technology, NORWAY, 6Centro de Investigación en Ciencias Atómicas, COSTA RICA, and 7University of Costa Rica, COSTA RICA

T185.f A HIGH THROUGHPUT ELECTRONIC CELL ANALYZER FOR CELL MECHANOPHENOTYPING
Norh Asmare, A K M Arifuzzman, Ningquang Wang, Mert Boya, Rixiu Liu, and A. Fatih Sarioglu
Georgia Institute of Technology, USA

T186.f DIELECTROPHORETIC DETECTION OF IMATINIB RESISTANCE IN K562 CELLS USING A LAB-ON-A-CHIP SYSTEM
Yağmur Demircan Yalçın1,2, Taylan Berkin Töräl2, Sertan Sukas2, Ender Yildirim2,4, Özge Zorlu2, Ufuk Gündüz1, and Haluk Külah1
1Middle East Technical University, TURKEY, 2Mikro Biyosistemler Electronics Inc., TURKEY, 3METU MEMS Center, TURKEY, and 4Çankaya University, TURKEY

T187.f LABEL-FREE ELECTRICAL IMPEDANCE SPECTROSCOPY BASED SENSOR-IN-A-TUBE FOR SINGLE CELLS ANALYSIS
Aleksandr Egunov1, Mariana Medina-Sánchez1, Dmitriy D. Karnaushenko1, Nicole Kretschmann2, Katja Akgün2, Tjalf Ziemssen2, Daniil Karnaushenko1, and Oliver G. Schmidt1,3
1Leibnitz IFW Dresden, GERMANY, 2Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, GERMANY, and 3Chemnitz University of Technology, GERMANY

T188.f NON-INVASIVE DETECTION OF NEPHROTOXICITY ON A PROXIMAL TUBULE ON-A-CHIP BY TRANS-EPITHELIAL/TRANS-ENDOTHELIAL ELECTRICAL RESISTANCE MEASUREMENTS
Ryohei Ueno1, Ramin B. Sadeghian1, Yuji Takata1, Kiyotaka Tsuji2, and Ryuji Yokokawa1
1Kyoto University, JAPAN and 2Panasonic Corporation, JAPAN

T189.f TOWARDS REAL-TIME MULTIPARAMETRIC IMPEDANCE CYTOMETRY
John McGrath1, Riccardo Reale2, Carlos Honrado3, Paolo Bisegna3, Nathan Swami1, and Federica Caselli2
1University of Virginia, USA and 2University of Rome Tor Vergata, ITALY

W186.f DETECTION OF STEROID HORMONES VIA DIRECT QUENCHING OF QUANTUM DOTS
Ye Liu, Bo Wu, Yi-Chieh Wang, and Li-Jing Larry Cheng
Oregon State University, USA
W187.f FAST REACTION SCREENING COMBINING SEGMENTED FLOW MICROFLUIDICS AND SURFACE ENHANCED RAMAN SPECTROSCOPY
Alexander Mendl1, Michael Köhler2, and Dušan Boskovic1
1Fraunhofer ICT, GERMANY and 2TU Ilmenau, GERMANY

W188.f LABEL-FREE NANOPARTICLE DETECTION IN 10^2 nm CHANNEL BY UTILIZING PHOTOTHERMAL OPTICAL DIFFRACTION
Yoshiyuki Tsuyama and Kazuma Mawatari
University of Tokyo, JAPAN

W189.f SEPARATION OF MITOCHONDRIAL DISEASED CELLS BASED ON ORGANELLE-LEVEL DIFFERENCE USING A DEP MICROFLUIDIC SYSTEM
Pei-Yin Chi1,2, Ting-Wei Chuang1, Tzu-Tsai Chu1, Chia-Tzu Kuo1, Yu-Ting Wu2, Vahid Farmehini2, Dar-Bin Shieh3, Fan-Gang Tseng2, Yau-Huei Wei3, Nathan Swami4, and Chia-Fu Chou1
1Academia Sinica, TAIWAN, 2National Tsing Hua University, TAIWAN, 3Changhua Christian Hospital, TAIWAN, 4University of Virginia, USA, and 5National Cheng-Kung University, TAIWAN

W190.f SINGLE-CELL MICROSCOPIC RAMAN SPECTROSCOPY FOR RAPID MICROBIAL DETECTION
Daisuke Onoshima, Kentaro Uchida, Hiroshi Yukawa, Kenji Ishikawa, Masaru Hori, and Yoshinobu Baba
Nagoya University, JAPAN
M194.f LENSFREE EARLY DETECTION OF BACTERIAL COLONIES
Vincent Haguet1, Dorothée Balle1, and Gaëlle Saint-Aurel2
1CEA Grenoble, FRANCE and 2GENEL SAS, FRANCE

M195.f OPEN SOURCE LAB AUTOMATION FOR HIGH THROUGHPUT MICROFLUIDIC MICROBIOLOGY
Sarah H. Needs and Alexander D Edwards
University of Reading, UK

M196.f OPTICAL INJECTION OF FLUORESCENCE MICROSENSOR TO A SPECIFIC CELL BY OPTICAL TWEEZERS AND LOCAL HEATING
Hisataka Maruyama, Ryo Yanagawa, and Fumihiito Arai
Nagoya University, JAPAN

M197.f PHOTOTHERMAL DETECTION PROBE USING OPTICAL FIBER
Hisashi Shimizu and Shoji Takeuchi
University of Tokyo, JAPAN

M198.f PORTABLE FLUORESCENCE POLARIZATION ANALYZER FOR ON-SITE MULTISAMPLE IMMUNOASSAY
Ayano Nakamura1, Osamu Wakao1, Ken Satou2, Mitsutoshi Aoyagi2, Kazuhiko Nishimura1, Chikaaki Mizokuchi1, Ken Sumiyoshi2, Masatoshi Maeki1, Akihiko Ishida1, Hirofumi Tani1, Koji Shigemura2, Akihide Hibara3, and Manabu Tokeshi1
1Hokkaido University, JAPAN, 2Tianma Japan, Ltd., JAPAN, 3Hokkaido Institute of Public Health, JAPAN, and 4Tohoku University, JAPAN

M199.f ULTRA-SMALL FOUR-EMISSION-POINT SPECTRAL-DETECTION SYSTEM BY SEVEN-DICHROIC-MIRROR ARRAY
Takashi Anazawa1 and Motohiro Yamazaki2
1Hitachi, Ltd., JAPAN and 2Hitachi High-Technologies Corporation, JAPAN

T190.f A DEEP LEARNING ENABLED FIELD-PORTABLE CELL ANALYZER
Dongmin Seo1, Sanghoon Shin1, Haechang Yang1, Seungmin Myeong1, Euijin Han1, Sangwoo Oh2, Moonjin Lee3, and Sungkyu Seo1
1Korea University, KOREA and 2Korea Research Institute of Ships & Ocean Engineering, KOREA

T191.f CONTINUOUS GLUCOSE MONITORING INSIDE SPHEROIDS BY MESOPOROUS FLUORESCENT MICROPARTICLES
Jun Sawayama and Shoji Takeuchi
University of Tokyo, JAPAN

T192.f HEAVY METALS MICROANALYSER FOR WATER QUALITY MONITORING BASED ON SELECTIVE CARBON DOTS FLUORESCENCE QUENCHING
Alex Pascual-Escó, Miguel Berenguel-Alonso, Julián Alonso-Chamarro, and Mar Puyol
Universitat Autònoma de Barcelona, SPAIN
T193.f IN-SITU MONITORING OF ESCHERICHIA COLI GROWTH ON DIGITAL MICROFLUIDICS BY OPTICAL CHEMOSENSORS FOR MICROBIAL CELL METABOLISM STUDIES
Wenting Qiu and Stefan Nagl
Hong Kong University of Science and Technology, HONG KONG

T194.f LAB-ON-A-CD CAPABLE OF CONTINUOUS FLUORESCENCE MEASUREMENT
Kazuhiro Morioka¹, Takuya Nojo², Akihide Hemmi³,
Norio Teshima¹, Tomonari Umemura¹, Shunigo Kato¹,
Katsumi Uchiyama², and Hizuru Nakajima²
¹Tokyo University of Pharmacy and Life Sciences, JAPAN,
²Tokyo Metropolitan University, JAPAN,
³Mebius Advanced Technology Ltd., JAPAN, and
⁴Aichi Institute of Technology, JAPAN

T195.f NANOLITRE-SCALE CAPILLARY CELL WITH EXTENDED EFFECTIVE OPTICAL PATH AND REDUCED STRAY LIGHT FOR ABSORPTION PHOTOMETRIC DETECTION
Jozef Šesták, Josef Planeta, and Vladislav Kahle
Czech Academy of Sciences, CZECH REPUBLIC

T196.f PEROVSKITE NANOCRYSTAL – HYFLON AD 60 OPTICAL THERMAL SENSORS FOR TEMPERATURE IMAGING IN DIGITAL MICROFLUIDICS
Zhangdi Lu¹, Yanxiu Li², Wenting Qiu¹, Andrey L. Rogach²,
and Stefan Nagl¹
¹Hong Kong University of Science and Technology, HONG KONG and
²City University of Hong Kong, HONG KONG

T197.f PLASMON-BASED DETECTION OF TOXICITY BIOMARKERS DERIVED FROM MICROPLASTICS-TREATED MODEL ANIMALS
Seungki Lee, Tae Ho Kang, Jinhee Choi, and Inhee Choi
University of Seoul, KOREA

T198.f SPATIALLY HOMOGENEOUS ILLUMINATION BY A COMPACT OPTICAL ARCHITECTURE
Vincent Haguet and Bernard Sartor
CEA Grenoble, FRANCE

W191.f A MICROFLUIDIC CHIP WITH AN INTEGRATED MICRO-HEATER AND LUMINESCENT TEMPERATURE SENSOR FOR SPATIALLY RESOLVED ANALYSIS OF DNA MELTING CURVES
Xuyan Lin, Chenyu Cui, and Stefan Nagl
Hong Kong University of Science and Technology, HONG KONG

W192.f COLLOIDAL PHOTONIC CRYSTAL ARRAY CHIP BASED ON NANOPIRATE SELF-ASSEMBLY ON PATTERNED HYDROPHOBIC SURFACE FOR SIGNAL-ENHANCED FLUORESCENT ASSAY
Rui Guo, Dan-Ni Wang, Yun-Yun Wei, Ying-Zhi Zhang,
Chun-Guang Yang, and Zhang-Run Xu
Northeastern University, CHINA
W193.f HIGH THROUGHPUT SIZE-DETERMINATION AND MULTIPLEXED FLUORESCENCE ANALYSIS OF SINGLE BIOLOGICAL PARTICLES IN A NANOFLUIDIC DEVICE
Quenting Lubart¹, Sune Levin¹, Stephan Block², Silver Jõemetsa¹, Sriram KK¹, Fredrik Höök¹, Marta Bally³, Elin K. Esbjörner¹, and Fredrik Westerlund¹
¹ Chalmers University of Technology, SWEDEN, ² Freie Universität Berlin, GERMANY, and ³ Umeå University, SWEDEN

W194.f INTEGRATED GLASS MICROPRISMS’ MATRIX FOR LIGHT COUPLING AND OPTICAL SENSING SYSTEMS IN LAB-ON-A-CHIP PLATFORMS
Aleksandra Pokrzywnicka, Patrycja Śniadek, and Rafal Walczak
Wrocław University of Science and Technology, POLAND

W195.f MACHINE LEARNING BASED IMAGE ANALYSIS OF OPTICALLY DETECTED NEURONS CULTURED IN-VITRO ON HIGH-DENSITY MICRO-PILLAR SUBSTRATES AND CHIPS
Ana Bedalov¹,², Tihana Marcluš³, and Damir Sapunar¹
¹ University of Split, CROATIA and ² Bedalov d.o.o for Research, Development, Innovation and Consulting, CROATIA

W196.f MAGNETIC LEVITATION-BASED PROTEIN DETECTION USING LENSLESS DIGITAL INLINE HOLOGRAPHIC MICROSCOPY
Sena Yaman, Kerem Delikoyun, and H. Cumhur Tekin
Izmir Institute of Technology, TURKEY

W197.f PHOTO-THERMALLY ENHANCED LIGHT SCATTERING METHOD FOR NANO PARTICLE DETECTION
Dan Maeda, Kazuma Mawatari, and Takehiko Kitamori
University of Tokyo, JAPAN

W198.f PORTABLE 3D PRINTED COLORIMETRIC SENSOR FOR REMOTE SOIL MEASUREMENT
Sepideh Keshan Balavandy¹, Fernando Maya¹, Ashley Townsend¹, Kimberley Frederick², and Michael C. Breadmore¹ ¹ University of Tasmania, AUSTRALIA and ² Skidmore College, USA

W199.f REGULATION OF LIPID DROPLETS IN LIVE PREADIPOCYTES USING OPTICAL DIFFRACTION TOMOGRAPHY AND RAMAN SPECTROSCOPY
Patricia Y. Liu, Chao M. Hsieh, Lip K. Chin, Yuzhi Shi, Shilun Feng, Jingbo Zhang, and Wee Ser
Nanyang Technological University, SINGAPORE

f - Sensors and Detection Technologies

M200.f BIOMECHANICAL STUDY OF LIVING CAENORHABDITIS ELEGANS EMBRYOS USING CELLULAR FORCE MICROSCOPY
Roger Krenger¹, Jan T. Burri², Thomas Lehner³, Bradley J. Nelson², and Martin A.M. Gijs¹
¹ École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND and ² ETH Zürich, SWITZERLAND
M201.f 10-μm-THICK ON-CHIP TRANSIENT FLOW VELOCITY SENSOR FABRICATED BY FEMTOSECOND LASER
Yaxiaer Yalikun1,2, Pan Kaige1, Yo Tanaka2,3, and Yoichiroh Hosokawa1
1 Nara Institute of Science and Technology, JAPAN, 2 RIKEN, JAPAN, and 3 Osaka University, JAPAN

M202.f SURFACE-PATTERNED SILICON CANTILEVER INTEGRATED WITH STRAIN SENSOR TO EVALUATE CONTRACTILE BEHAVIORS IN REAL TIME
Mingming Dong, Nomin-Erdene Oyunbaatar, Dong-Su Kim, and Dong-Weon Lee
Chonnam National University, KOREA

T199.f A LIQUID-METAL ENCAPSULATED BAND-AID LIKE SENSOR FOR NON-INFRINGEMENT OF FONTANELLE PRESSURE OF INFANTS
Ziyi Huang, Baoyue Zhang and Jaewon Park
Southern University of Science and Technology, CHINA

T200.f LOW SAMPLE CONSUMING, PORTABLE VISCOMETER BASED ON LAPLACE-INDUCED-PUMPING AND REFRACTION FOR HEMORHEOLOGY
Matthias Hermann1, Kyle Bachus1, Graham Gibson2, and Richard Oleschuk1
1 Queen’s University, CANADA and 2 CMC Microsystems, CANADA

T201.f REAL-TIME SENSING OF OSTEOCLAST ACTIVITY ON A MICROFLUIDIC CHIP BY ELECTRICAL IMPEDANCE
Alexander P.M. Guttenplan1, Marijn Lemmens2, Gilles Oudebrouckx2, Daniel de Melo Pereira1, Hoon Suk Rho1, Zeinab Tahmasebi Birgani1, Stefan Giselbrecht1, Roman K. Truckenmüller1, Ronald Thoelen2, and Pamela Habibovic1
1 Maastricht University, THE NETHERLANDS and 2 Hasselt University, BELGIUM

T202.f SURFACE-TEXTURED PHOTOSENSITIVE POLYMER THIN FILM AS NEW CRACK-BASED STRAIN SENSOR TO MONITOR HUMAN MOTION
Jongsung Park1, Dong-Su Kim1, Ji-Kwan Kim2, and Dong-Weon Lee1
1 Chonnam National University, KOREA and 2 Gwangju University, KOREA

W200.f LIQUID METAL-EMBEDDED MICROFLUIDIC PRESSURE SENSOR FOR REAL-TIME MONITORING
Kelu Peng1, Sunghyun Cho2, Junyi Yao1, Younghak Cho2, Hyunsoo Kim2, and Jaewon Park1
1 Southern University of Science and Technology, CHINA, 2 Korea Institute of Machinery and Materials (KIMM), KOREA, and 3 Seoul National University of Science and Technology, KOREA
<table>
<thead>
<tr>
<th>ID</th>
<th>Title</th>
<th>Authors</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>W201.f</td>
<td>MEASURING MAGNETIC SUSCEPTIBILITY OF PARAMAGNETIC SOLUTION USING DIAMAGNETIC REPULSION OF POLYMER MICROPARTICLES</td>
<td>Bong Hwan Jang, Seyong Kwon, and Joo H. Kang</td>
<td>Ulsan National Institute of Science and Technology (UNIST), KOREA</td>
</tr>
<tr>
<td>W202.f</td>
<td>SINGLE BACTERIA DETECTION VIA PIEZOELECTRIC SUSPENDED MICROCHANNEL RESONATORS</td>
<td>Annalisa De Pastina1,2, Damien Maillard1, Birge Özel Duygan3, Jan Roelof Van Der Meer3, and Luis Guillermo Villanueva1</td>
<td>1École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND, 2Trinity College Dublin, IRELAND, and 3University of Lausanne, SWITZERLAND</td>
</tr>
<tr>
<td>M203.f</td>
<td>FACILE FABRICATION OF FULLY INTEGRATED PAPER-BASED ORIGAMI MICRODEVICE FOR COLORIMETRIC DISCRIMINATION OF VIABLE PATHOGENS</td>
<td>Phuoc Tung Trieu, Woo Ri Chae and Nae Yoon Lee</td>
<td>Gachon University, KOREA</td>
</tr>
<tr>
<td>T203.f</td>
<td>INKJET 3D-PRINTED MICROCANTILEVER NANOGRAM RESOLUTION MASS SENSOR</td>
<td>Patrycja Sniadek, Bartosz Kawa, and Rafal Walczak</td>
<td>Wroclaw University of Science and Technology, POLAND</td>
</tr>
<tr>
<td>W203.f</td>
<td>DISPOSABLE MULTI-SENSORS FOR DIRECT DETECTING PH, CONDUCTIVITY AND TEMPERATURE OF SALIVA IN MOUTH</td>
<td>Wei-Sin Kao, Wei-Hsing Yen, Yu-Wen Hung, and Che-Hsin Lin</td>
<td>National Sun Yat-sen University, TAIWAN</td>
</tr>
<tr>
<td>W204.f</td>
<td>PATTERN CLASSIFICATION AND SEGMENTATION IN MULTIDIMENSIONAL DNA CONCENTRATION SPACES BY SYNTHETIC CHEMICAL REACTION NETWORK</td>
<td>Shu Okumura1, Guillaume Gines2, Yannick Rondelez2, Teruo Fujii1, and Anthony Genot1</td>
<td>1University of Tokyo, JAPAN and 2PSL Research University, FRANCE</td>
</tr>
</tbody>
</table>
Artificial Intelligence and Microfluidics

M204.g DEEP CONVOLUTIONAL NEURAL NETWORKS FOR VIABILITY ANALYSIS DIRECTLY FROM CELL HOLOGRAMS CAPTURED USING LENSLESS HOLOGRAPHIC MICROSCOPY
Kerem Delikoyun, Ersin Cine, Muge Anil-Inevi, Engin Ozcivici, Mustafa Ozuyosal, and H. Cumhur Tekin
Izmir Institute of Technology, TURKEY

T204.g DEEP LEARNING ANALYSIS OF NEUTROPHIL NUCLEAR MORPHOLOGY DURING NETOSIS USING A MICROFLUIDIC DEVICE
Alan M. Gonzalez-Suarez, Roberto Rodriguez-Moncayo, Jose A. Hernandez-Ortiz, and Jose L. Garcia-Cordero
Centro de Investigacion y de Estudios Avanzados del IPN, MEXICO

Fuel Cells

M205.g DRYING CAPABILITY OF RMFC MICRO-CHANNEL EVAPORATOR WITH IMPROVED FLOW DISTRIBUTION, GAS VENTING MANIFOLD AND ARTIFICIAL CAVITIES
Hung-Yu Chen1, Fan-Gang Tseng1,2, and Chin Pan3
1National Tsing Hua University, TAIWAN, 2Academia Sinica, TAIWAN and 3City University of Hong Kong, HONG KONG

W205.g A HIGH HYDROGEN CONVERSION AND HIGH-TEMPERATURE CATALYTIC HYDROGEN MICRO-CHIP COMBUSTOR APPLIED TO THERMAL MANAGEMENT FOR METHANOL REFORMER
Ming-Jyun Li1, Shang-Yun Huang1, and Fan-Gang Tseng1,2
1National Tsing Hua University, TAIWAN and 2Academia Sinica, TAIWAN

Microfluidics for X-Ray and e-Beam Applications

M206.g DROPLET TRIGGERING FOR SERIAL FEMTOSECOND CRYSTALLOGRAPHY USING 3D-PRINTED MICROFLUIDICS
Daihyun Kim, Austin Echelmeier, Jorvani Cruz Villarreal, Sahir Gandhi, Sebastian Quintana, Ana Egatz-Gomez, and Alexandra Ros
Arizona State University, USA

M207.g TRACKING TRANSIENT CHANGES ON THE MILLI-SECOND TIME-SCALE: X-RAY SPECTROSCOPY AND MICROFLUIDIC MIXING
Thomas Kroll1, Leland B. Gee2, Diego A. Huyke2, Augustin Braun2, Michael Mara2, Matthew James2, Ashwin Ramachandran2, Dimosthenis Sokaras1, Uwe Bergmann1, Edward I. Solomon2, Daniel P. DePonte1, and Juan G. Santiago2
1SLAC National Accelerator Laboratory, USA and 2Stanford University, USA
T205.g A THREE-DIMENSIONAL MICROFLUIDIC MIXER WITH INDEPENDENTLY ADJUSTABLE MIXING AND PROBING REGIONS
Diego A. Huyke1, Ashwin Ramachandran1, Thomas Kroß2, Daniel P. Deponte2, and Juan G. Santiago1
1Stanford University, USA and 2SLAC National Accelerator Laboratory, USA

T206.g SAMPLE CONSUMPTION REDUCTION FOR SERIAL CRYSTALLOGRAPHY USING WATER-IN-OIL DROPLETS
Austin Echelmeier1, Jorvani Cruz Villarreal1, Daihyn Kim1, Sahir Gandhi1, Ana Egatz-Gomez2, Darren Thiffault3, Jesse D. Coe1, Gerrit Brehm1, Caleb Madsen3, Sebastian Quintana1, Saša Bajt4, Marc Messerschmidt1, Jose Domingo Meza-Aguilar1, Dominik Oberthür1, Max O. Wiedorn2, Holger Fleckenstein3, Sabine Botha1, Derek Mendez2, Juraj Knosha1, Jose Martin Garcia1, Hao Hu5, Stella Lisova6, Aschkan Allah Gholi7, Yaroslav Gevorkov4, Kartik Ayyer4, Steve J. Apilin2, Helen M. Ginn4, Heinz Graefsmaz4, Andrew J. Morgan4, Dominic Greiffenberg4, Alexander Klueve4, Torsten Laurus4, Jennifer Poehlsens4, Ulrich Trunk3, Filip R.N.C. Maia4, Davide Mezza6, Raimund Fromme1, Britta Weinhausen3, Grant Mills3, PatrikVagovic8, Yoonhee Kim9, Joachim Schulz2, Katerina Döberner3, Jolanta Sztuk-Dambietz10, Manuela Kuhn4, Thomas D. Grant8, Nadia A. Zatsepin1, Petra Fromme1, Richard A. Kirian1, and Alexandra Ros1
1Arizona State University, USA, 2Göttingen University, GERMANY, 3European XFEL, GERMANY, 4Deutsches Elektronen-Synchrotron (DESY), GERMANY, 5University of Oxford, UK, 6Paul Scherrer Institute, SWITZERLAND, 7University of Upsala, SWEDEN, and 8University of Buffalo, USA

T207.g UNDERSTANDING THE LIPID NANOPARTICLES STRUCTURE DYNAMICS USING A TIME-RESOLVED SAXS MEASUREMENT
Masatoshi Maeki1, Niko Kimura1, Kazuki Shimizu2, Kento Yonezawa2, Nobutaka Shimizu2, Akihiko Ishida1, Hirofumi Tani1, and Manabu Tokeshi1
1Hokkaido University, JAPAN and 2High Energy Accelerator Researcch Organization, JAPAN

W206.g CRYO-MICROFLUIDIC DEVICES ENABLE MILLISECOND TIME-CORRELATION BETWEEN LIVE-IMAGING AND CRYO-ELECTRON MICROSCOPY IN CAENORHABDITIS ELEGANS
Marie Fuest1, Miroslava Schaffer2, Giovanni Marco Nocera1, Rodrigo I. Galilea-Kleinsteuber1, Michael Heymann2, Jürgen M. Plitzko2, and Thomas P. Burg1,3
1Max Planck Institute for Biophysical Chemistry, GERMANY, 2Max Planck Institute of Biochemistry, GERMANY, and 3Technische Universität Darmstadt, GERMANY
W207.g TIME-RESOLVED STRUCTURE DETERMINATION VIA RAPID MIXING MICROFLUIDICS
Martin Trebbin1,2 and Diana C.F. Monteiro1
1State University of New York, Buffalo, USA and 2Hauptman-Woodward Medical Research Institute, USA

W208.g ION BASED PRESSURE DRIVEN ELECTRIC POWER GENERATOR USING MICRO/NANO GLASS POROUS DEVICE
Yo Tanaka1, Satoshi Amaya1, Wataru Nagafuchi1, Norihiro Kamamichi2, and Yaxiaer Yalikun1
1RIKEN, JAPAN and 2Tokyo Denki University, JAPAN

M208.g A MICRO-FLUIDIC DEVICE TO MEASURE ANTIOXIDATIVE CAPACITY OF TEA CATECHINS
Alexandra Homsy1, Laure Jeandupeux1, Marzena Walaszczyczyk1, Claudio Prieur1, Frédéric Truffer1, Martial Geiser1, Isabelle Udrisard1, Agnieszka Kosinska Cagnazzo1, Wilfried Andlauer1, and Harry J. Whitlow2
1HES-SO, SWITZERLAND and 2University of Louisiana, USA

M209.g DEVELOPMENT OF CONTROLLED RELEASE TABLET REAGENTS EMBEDDED COMPACT NUTRIENT ANALYZER FOR CONTINUOUS MONITORING OF NUTRIENT CONTENT IN CROP BODY
Toshihiro Kasama1,4, Naoki Hirohama1,4, Yoshishige Endo1,4, Takumi Okamoto2,4, Tetsushi Koide2,4, Chiharu Sone3,4, Masashi Komine3,4, Yukio Yaji3,4, Atsushi Ogawa3,4, and Ryo Miyake1,4
1University Tokyo, JAPAN, 2Hiroshima University, JAPAN, 3Akita Prefectural University, JAPAN, and 4Japan Science and Technology Agency (JST), JAPAN

T208.g ARTIFICIAL PHEROMONE EFFECT IMPOSED ON REAL LIVING MICROALGAE CELLS CONFINED IN A MICROCHIP WITH OPTICAL FEEDBACK SYSTEM
Kazunari Ozasa1, June Won2, Simon Song2, and Mizuo Maeda1
1RIKEN, JAPAN and 2Hanyang University, KOREA

T209.g THE UNIVERSAL LAB-ON-CHIP PLATFORM FOR BIO-NANOSATELLITE
Agnieszka Podwin1, Adriaanni Graja1,2, Dawid Przystupski2, Danylo Lizanets1,4, Jan A. Dziuban1, and Rafał Walczak1
1Wrocław University of Science and Technology, POLAND, 2SatRevolution S.A., POLAND, 3Wrocław Medical University, POLAND, and 4Lviv Polytechnic National University, UKRAINE
CONTINUOUS FLOW ANALYSIS OF ATMOSPHERIC ICE-NUCLEATING PARTICLES IN THE EASTERN MEDITERRANEAN
Mark D. Tarn1, Sebastien N.F. Sikora1, Grace C.E. Porter1, Bethany V. Wyld2, Naama Reicher2, Matan Alayof2, Alexander D. Harrison1, Yinon Rudich1, Jung-uk Shim1, and Benjamin J. Murray1
1 University of Leeds, UK and 2Weizmann Institute of Science, ISRAEL

MEASURING THE NUCLEATION KINETICS OF ARAGONITE USING A SELF-DIGITIZATION MICROFLUIDIC CHIP
Zongwei Zhang, Yuan Gao, Shunbo Li, and Gang Li
Chongqing University, CHINA

3D CULTURE STRATEGY TO ENHANCE HAIR INDUCTIVE POTENTIAL OF HUMAN HAIR FOLLICLE DERIVED DERMAL PAPILLA CELLS
Seongkyun Choi, Jinchul Ahn, Ji Hun Yang, and Seok Chung
Korea University, KOREA

CONTROLLED GIANT VESICLE ASSEMBLY AND MANIPULATION USING MEMBRANE DISPLACEMENT TRAPS
Zhu Chen1, Hesam Babahosseini1,2, Supriya Padmanabhan1, Tom Misteli2, and Don L. DeVoe1
1 University of Maryland, College Park, USA and 2National Institutes of Health, USA

DUAL-FLOW MICROFLUIDIC DEVICE FOR MODELLING BIOLOGICAL BARRIER SYSTEMS
Lydia Baldwin, Alex Iles, John Greenman, Nicole Pamme, and Charlotte E. Dyer
University of Hull, UK

HYDROGEL-BASED SEALED MICROCHAMBERS FOR SIMPLE AND COST-EFFECTIVE CELL CULTURE AND DRUG TESTING
Shotaro Yoshida, Kensuke Sumomozawa, and Matsuhiko Nishizawa
Tohoku University, JAPAN

INTEGRATION OF ON-CHIP CLUSTER PURIFICATION AND COMPARTMENTALIZATION FOR RNA-SEQ ANALYSIS OF CLUSTERS
Hiroaki Saito1, Soo Hyeon Kim1, Issei Tsuchiya1, Satoi Nagasawa1, Masahide Seki1, Yusuke Komazaki1, Toru Torii1, Yutaka Suzuki1, and Teruo Fuji1
1 University of Tokyo, JAPAN and 2National Institute of Advanced Industrial Science and Technology (AIST), JAPAN

REPEATED SINGLE CELL CYTOMETRY IN AN OPTOFLOWDIC CHIP
Gregory A. Cooksey1, Paul N. Patrone1, Nikita Podobedov2, Stephen E. Meek1, and Jason A. Hsu4
1 National Institute of Standards and Technology (NIST), USA, 2 Columbia University, USA, 3Montgomery College, USA, and 4Montgomery Blair High School, USA
M216.h WRINKLE TEXTURE GUIDED CELL GROWTH ORIENTATION
Bing-Cheng Jiang and Ya-Yu Chiang
National Chung-Hsing University, TAIWAN

T210.h A MICROFLUIDIC DEVICE FOR TESTING STATIC AND DYNAMIC, IN VIVO LIKE, DRUG CONCENTRATION EFFECTS ON CANCER CELLS
Job Komen¹, Eiko Y. Westerbeek¹,², Andries D. van der Meer¹, and Albert van den Berg¹
¹University of Twente, THE NETHERLANDS and ²Vrije Universiteit Brussel, BELGIUM

T211.h CIRCULATING TUMOR CELL ISOLATION FROM CLINICAL SAMPLES UTILIZING A LATERAL FILTER ARRAY MICROFLUIDIC DEVICE
Pablo J. Dopico¹, Kangfu Chen¹, Jose Varillas¹, Valber Pedrosa², Thomas J. George¹, and Z. Hugh Fan¹
¹University of Florida, USA and ²São Paulo State University, BRAZIL

T212.h DEVELOPMENT OF A MICROFLUIDIC PLATFORM FOR INDUCTION OF ANGIOGENESIS FROM A VASCULARIZED MICTISSUE
Wen-Chih Yang, Che-Yun Lin, Wei-Wen Liu, Pai-Chi Li, and Yu-Hsiang Hsu
National Taiwan University, TAIWAN

T213.h ENGINEERED 3D VASCULARIZED NEUROSHERE-DERIVED FROM INDUCED NEURAL STEM CELL IN AN INJECTION-MOLDED MICROFLUIDIC ARRAY
Youngtaek Kim, Nari Shin, Jihoon Ko, Jungho Ahn, Kyung-Sun Kang, and Noo Li Jeon
Seoul National University, KOREA

T214.h IN VITRO MICROFLUIDICS-BASED BLOOD-BRAIN BARRIER MODEL WITH IN-LINE TEER MEASUREMENT
Kai-Hong Tu and Ya-Yu Chiang
National Chung Hsing University, TAIWAN

T215.h INTESTINE-ON-A-CHIP FOR ANTICANCER NANO PARTICLE TESTING
Oihane Mitxelena-Iribarren¹,², Claudia Olaizola², Sergio Arana¹,², and Maite Mujika¹,²
¹Cei, SPAIN and ²Universidad de Navarra, SPAIN

T216.h ROBOTIC CAPTURE AND MANIPULATION OF CELLS USING MAGNETIC MICROWHEELS
Tonguc O. Tasci¹, Tao Yang², Avanish Mishra¹, Keith Neeves², David Marr², and Mehmet Toner¹
¹Harvard Medical School, USA and ²Colorado School of Mines, USA

W211.h A REUSABLE LAB-ON-A-CHIP FOR BACTERIA ENRICHMENT FROM LARGE VOLUMES
Matthias Hügel¹,², Benedict Martens¹, Ole Behrmann¹,², Frank T. Hufert³, Gregory Dame², and Gerald A. Urban¹
¹University of Freiburg, GERMANY and ²Brandenburg Medical School Theodor Fontane, GERMANY
W212.h A VERSATILE MICROPATTERNING APPROACH FOR STUDYING LIVE CELL SIGNALING EVENTS
Peter Lanzerstorfer1, Ulrike Müller2, Roland Hager3, Cindy Dirscherl2, Klavdiya Gordiyenko3, Christof M. Niemeyer3, Sebastian Springer1, and Julian Weghuber1
1University of Applied Sciences Upper Austria, AUSTRIA, 2Jacobs University, GERMANY, and 3Karlsruhe Institute of Technology (KIT), GERMANY

W213.h DIFFUSION FROM STEADY-STATE PROFILE (DSSP) FOR LOW COST, LOW CONCENTRATION MEASUREMENT OF DIFFUSION
Joshua T. Loessberg-Zahl1, Marc R. Gillrie2, Roger D. Kamm2, Albert van den Berg1, Andries van der Meer1, and Jan C.T. Eijkel1
1Technical University of Twente, THE NETHERLANDS and 2Massachusetts Institute of Technology, USA

W214.h EXPLORING THE BIOPHYSICAL FACTOR CAUSING BREAST CANCER CELL METASTASIZE WITH ORGANTYPC NICHE-ON-A-CHIP
Chun-Jieh Hsu1, Hseuh-Yao Chu1, Yin-Ju Chen2, Long-Sheng Lu2, and Fan-Gang Tseng1,3
1National Tsing Hua University, TAIWAN, 2Taipei Medical University Hospital, TAIWAN, and 3Academia Sinica, TAIWAN

W215.h INSERTION MEASUREMENT OMPLA PROTEIN INTO LIPID BILAYER USING ION CURRENT MEASUREMENT DEVICE
Seren Ohnishi and Koki Kamiya
Gunma University, JAPAN

W216.h MICROFLUIDIC PLATFORM FOR IMPLEMENTATION OF ORGANIC FIELD EFFECT TRANSISTOR BASED BIOSensor
Liubov Bakhchova and Ulrike Steinmann
Otto-von-Guericke-University, GERMANY

W217.h THE ROLE OF INTERFACE CURVATURE ON SPERM BEHAVIOUR
Mohammad Reza Raveshi, Melati Abdul Halim, Adrian Neild, and Reza Nosrati
Monash University, AUSTRALIA

M217.h CELL-FREE HIGH-THROUGHPUT PROTEIN SYNTHESIS USING MESOSCALE DEVICES
Karim Mohamed1, Champak Das2, Shouguang Jin1, and Z. Hugh Fan1
1University of Florida, USA and 2Dasfanh Bioscience LLC, USA

M218.h EFFECTIVE MIXING IN A MICRO REACTION CHAMBER USING MAGNETIC MICRO BEADS FOR INCREASED MOLECULAR SENSING READOUT TIME
Eriola-Sophia Shanko, Yoeri van de Burgt, and Jaap den Toonder
Technische Universiteit Eindhoven (TU/e), THE NETHERLANDS
M219.h SHAPE- AND SIZE-CONTROLLED MICROGEL PARTICLES
Daniel Debroy, John Oakey, and Katie Dongmei Li-Oakey
University of Wyoming, USA

T217.h A MICROCHIP ELECTROPHORESIS – ELECTROCHEMICAL DETECTION (ME-EC) SYSTEM TO MONITOR OXIDATIVE MODIFICATIONS OF PROTEIN-BOUND TYROSINE AND PHENYLALANINE AS IN VIVO BIOMARKERS FOR OXIDATIVE STRESS
Dhanushka B. Weerasekara and Susan M. Lunte
University of Kansas, USA

T218.h COMBINATIONAL DIFFUSIOPHORETIC AND ELECTROPHORETIC NANOPARTICLE SEPARATION
Kyunghun Lee, Jongwan Lee, Dogyeong Ha, Minseok Kim, and Taesung Kim
1 Ulsan National Institute of Science and Technology (UNIST), KOREA and
2 Kumoh National Institute of Technology, KOREA

T219.h HIGH-THROUGHPUT DROPLET MICROREACTOR FOR CATALYTIC ACTIVITY SCREENING OF SOLID CATALYST PARTICLES
Jeroen C. Vollenbroek, Anne-Eva Nieuwelink, Johan G. Bomer, Ronald M. Tiggelaar, Albert Van den Berg, Bert M. Weckhuysen, and Mathieu Odijk
1 University of Twente, THE NETHERLANDS and
2 Utrecht University, THE NETHERLANDS

T220.h SYNTHESIS OF MONODISPERSE GOLD NANOPARTICLES IN FOUR PHASES MICROFLUIDICS BY CONTROLLING FLOW RATE DIFFERENCE
Yuanwei Wang, Hayato Ogawa, and Hiromasa Yagyu
Kanto Gakuin University, JAPAN

W218.h A REPULSIVE POINT-SOURCE DIFFUSIOPHORESIS DEVICE FOR NANOPARTICLE SEPARATION
Sangjin Seo, Dogyeong Ha, and Taesung Kim
Ulsan National Institute of Science and Technology (UNIST), KOREA

W219.h COMPARATIVE STUDY OF LIQUID-PHASE AUTOXIDATION OF INDAN IN MICROFLUIDIC REACTORS
Muhammad Siddiquee, Yucheng Wu, and Neda Nazemifard
University of Alberta, CANADA

W220.h PEO CAN IMPROVE THE RESOLUTION OF SIZE-BASED SEPARATIONS IN SPIRAL CHANNELS
Alex Jafek, Haidong Feng, Hayden Brady, Raheel Samuel, and Bruce Gale
University of Utah, USA

Chemical Applications: Separations, Mixers and Reactions
<table>
<thead>
<tr>
<th>Paper Number</th>
<th>Title</th>
<th>Authors</th>
<th>Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>M220.h</td>
<td>A MICROFLUIDIC CAVITATION-MICROSTREAMING DNA EXTRACTOR</td>
<td>Abdi M. Kaba, Hyunjin Jeon, and Dohyun Kim</td>
<td>Myongji University, KOREA</td>
</tr>
<tr>
<td>M221.h</td>
<td>DEVELOPMENT OF A SIMPLE LAB-ON-A-CHIP SYSTEM FOR THE SENSITIVE IMMUNOASSAY-BASED DETECTION OF BACTERIAL PATHOGENS FROM FOOD SAMPLES</td>
<td>Suk-Jung Choi and Hee-Jung Kim</td>
<td>Gangneung-Wonju National University, KOREA</td>
</tr>
<tr>
<td>M222.h</td>
<td>GRAVITY-DRIVEN MICROFLUIDIC SPUTUM HOMOGENIZER</td>
<td>Korakot Boonyaphon and Sung-Jin Kim</td>
<td>Konkuk University, KOREA</td>
</tr>
<tr>
<td>M223.h</td>
<td>MICROCHANNELS FOR PRECONCENTRATING SWEAT</td>
<td>Hirotada Hirama, Ryutaro Otahara, and Masanori Hayase</td>
<td>1 National Institute of Advanced Industrial Science and Technology (AIST), JAPAN, 2 Tokyo University of Science, JAPAN</td>
</tr>
<tr>
<td>M224.h</td>
<td>MITIGATION OF CHANNEL CLOGGING IN A DETERMINISTIC LATERAL DISPLACEMENT BLOOD PROCESSING DEVICE BY POLYAMINE INDUCED DNA FOLDING</td>
<td>Tatsuya Yoshizawa, Yuki Jingu, Yuki Oka, Masaru Irita, Toshihiro Suzuki, Tetsuya Nakatsura, Masato Kubo, Ryushin Mizuta, and Masanori Hayase</td>
<td>1 Tokyo University of Science, JAPAN, 2 Teikyo University, JAPAN, and 3 National Cancer Center Japan, JAPAN</td>
</tr>
<tr>
<td>M225.h</td>
<td>ON CHIP PLATFORM FOR TAU PROTEIN AGGREGATION AND ALZHEIMER’S DRUG DOSE RESPONSE</td>
<td>Shubha Jain, Lopamudra Das, Sarpras Swain, Lopamudra Giri, and Harikrishnan Narayanan Unni</td>
<td>Indian Institute of Technology (IIT Hyderabad), INDIA</td>
</tr>
<tr>
<td>M226.h</td>
<td>QUICK ISOLATION OF CIRCULATING TUMOR CELLS FROM HUMAN WHOLE BLOOD BY A NOVEL MICROFLUIDIC DESIGN</td>
<td>Sung-Chi Tsai, Yi-Jen Chen, Wen-Yi Chang, Pyea-Yoo Kim, Yun-Chi Tsai, and Howard Doong</td>
<td>LifeCode Biotech Co., TAIWAN</td>
</tr>
<tr>
<td>M227.h</td>
<td>A SINGLE TUBE ASSAY BASED ON DUAL-ELECTROSTATIC INTERACTION STRATEGY FOR RAPID AND ULTRASENSITIVE PATHOGENIC BACTERIA DETECTION</td>
<td>Feixiong Chen, Dao Thi Thuy Nguyen, Yong Shin, and Tae Yoon Lee</td>
<td>1 Chungnam National University, KOREA and 2 University of Ulsan College of Medicine, KOREA</td>
</tr>
<tr>
<td>T221.h</td>
<td>AMPHIPHILIC POLY(α)GLUTAMATE AS RNA INTERFERENCE NANOCARRIER TO BRAIN TUMORS</td>
<td>Adva Krivitsky, Elam Yeini, Sabina Pozzi, Sapir Golan, Evgeni Pisarevsky, and Ronit Satchi-Fainaro</td>
<td>Tel-Aviv University, ISRAEL</td>
</tr>
</tbody>
</table>
T222.h CAPACITIVE SENSING OF TRIGLYCERIDE FILM REACTIONS TO DUODENAL CONTENTS
George E. Banis, Luke A. Beardslee, Justin M. Stine, and Reza Ghodssi
University of Maryland, USA

T223.h INTEGRATED PROTOTYPE FOR POINT-OF-CARE DIAGNOSIS OF CHLAMYDIA TRACHOMATIS INFECTIONS
Shivani Sathish, Kazumi Toda-Peters, and Amy Q. Shen
Okinawa Institute of Science and Technology (OIST), JAPAN

T224.h MICROFLUIDIC SYSTEM USING A HOMOBIFUNCTIONAL IMIDOESTER FOR SIMULTANEOUS BIOMOLECULES ISOLATION
Yoon Ok Jang¹, Choong Eun Jin¹, Bonhan Koo¹, Tae Yoon Lee², and Yong Shin¹
¹University of Ulsan College of Medicine, KOREA and ²Chungnam National University, KOREA

T225.h NEURONAL CULTURE AT SINGLE CELL LEVEL FOR CREATION OF BIOLOGICAL NEURONAL NETWORK
Stephany Mai Nishikawa¹, Soo Hyeon Kim¹, Yoshiho Ikeuchi¹, Timothée Levi¹,², and Teruo Fujii¹
¹University of Tokyo, JAPAN and ²University of Bordeaux, FRANCE

T226.h PERFORMANCE OF USING DEFORMABILITY OF ENDOMETRIAL CELLS AS A DIAGNOSTIC TEST FOR ENDOMETRIOSIS
Ahmad Altayyeb¹, Essam Othman², Maha Khashbah³, Abdelhady Esmaeel³, Mohamed El-Mokhtar³, Cornelis Lambalk³, Velja Mijatovic³, and Mohamed Abdelgawad³,⁴
¹Zewail City of Science and Technology, EGYPT, ²Assiut University, EGYPT, ³Amsterdam University Medical Center, THE NETHERLANDS, and ⁴American University of Sharjah, UAE

T227.h SIMULTANEOUS, TRIPLEX COLOURIMETRIC MEASUREMENT OF CARDIAC BIOMARKERS IN FLUOROPOLYMER MICROFLUIDIC STRIPS
Nuno Reis¹,²,³, Ana Castanheira¹,², Filipa Pereira¹, and Alexander Edwards¹,⁴
¹Capillary Film Technology Ltd., UK, ²Loughborough University, UK, ³University of Bath, UK, and ⁴University of Reading, UK

T228.h SYNTHESIS OF BORON-10 ENRICHED CHITOSAN COATED PVA/ALGINATE NANOPARTICLES (CHI/ALG-PVA-B NPS) BY ELECTROSPRAY TECHNIQUE TO TREAT ORAL SQUAMOUS CELL CARCINOMA BY BORON NEUTRON CAPTURE THERAPY (BNCT)
Han-Lin Cho¹, Venkanagouda S. Goudar¹, Wei-Jen Chan¹, and Fan-Gang Tseng¹,²
¹National Tsing Hua University, TAIWAN and ²Academia Sinica, TAIWAN
W221.h 3-DIMENSIONAL PAPER-BASED SAMPLE PREPARATION DEVICE FOR EXOSOME ISOLATION/PRECONCENTRATION
Hyerin Kim1, Kyu Hyong Lee2, Sung Il Han3, Dongho Lee3, Yong Kyoung Yoo1, Cheonjung Kim1, Junwoo Lee1, Ganghyeon Kim1, Seok Chung2, Dohwan Lee1,3, and Jeong Hoon Lee1
1 Kwangwoon University, KOREA, 2 Yonsei University, KOREA, 3 CALTH, Inc., KOREA, 4 Korea University, KOREA, and 5 Georgia Institute of Technology, USA

W222.h ASSESSMENT OF CHIMERIC ANTIGEN RECEPTOR T (CAR-T) CELL CYTOTOXICITY USING DROPLET MICROFLUIDICS
Haitao Wang1, Johnny Kuan-Un Wong1, Jingxuan Shi2,3, Yanwei Jia1, Chuxia Deng1, Lianne Jiang4, Peng Li5, and Ada Hang-Heng Wong1
1 University of Macau, MACAU, 2 Chinese Academy of Science, CHINA, 3 University of Chinese Academy of Sciences, CHINA, and 4 Macquarie University, AUSTRALIA

W223.h GUIDING 3D PODOCYTE CELLS CULTIVATION ON THE OUTER COAXIAL ALGINATE TUBES TO MAKE GLomerULAR ON THE CHIP
Yin-Yun Chen1, Jyun-Wei Chen1, Jie-Sheng Chen1, Yi-Ching Ko2, Hsiang-Hao Hsu2, and Fan-Gang Tseng1,3
1 National Tsing Hua University, TAIWAN, 2 Kinkou Chang Gung Memorial Hospital, TAIWAN, and 3 Academia Sinica, TAIWAIN

W224.h MACROPHAGE ACCELERATES INFLAMMATION OF PANCREATIC β-CELL AGGREGATES
Marie Shinohara, Thalia Nghiem, Qiao You Lau, Fumiya Tokitou, and Yasuyuki Sakai
University of Tokyo, JAPAN

W225.h MINIATURIZED EXOSOME ISOLATION SYSTEM USING CATIONIC POLYMER AND SYRINGE FILTER
Chanhee Park, Jinhyun Kim, Hoyoon Lee, Jina Choi, Hyunsung Kim, and Sehyun Shin
Korea University, KOREA

W226.h OPTIMIZATION OF THE THIN-LAYERED ELISA AND STORAGE OF THE MICROCHIP
Adelina Smirnova, Ryoichi Ohta, Kazuma Mawatari, and Takehiko Kitamori
University of Tokyo, JAPAN

W227.h PAPER-BASED MINIATURIZED DEVICE FOR DETECTION OF BETA-LACTAM ANTIBIOTICS IN MILK
Sammer-ul Hassan1, Prashant Goel2, Naresh Kumar3, and Xunli Zhang1
1 University of Southampton, UK and 2 National Dairy Research Institute, INDIA
SINGLE LASER-DETECTOR BASED MULTIPLEXED FLUORESCENCE MEASUREMENT IN DROPLET MICROFLUIDICS USING ON-CHIP FIBRE OPTICS
Ambili Mohan1, Preksha Gupta2, Taslimarif Saiyed2, and Anil Prabhakar1
1Indian Institute of Technology, INDIA and
2Centre for Cellular and Molecular Platforms, INDIA

TOWARD A DROPLET-BASED FLUORESCENCE ASSAY FOR CRISPR-CAS9 ENGINEERING
Alexandre Baccouche, Kevin Montagne, Hiroshi Nishimasu, Nozomu Yachie, Osamu Nureki, Teruo Fujii, and Anthony J. Genot
University of Tokyo, JAPAN

ACOUSTOPHORESIS IN GEL-FILLED MICROCHANNELS TOWARDS IN VIVO-LIKE CELL MANIPULATION AND CELL MIGRATION STUDIES
Michael Heiss and Rune Barnkob
Technical University of Munich, GERMANY

AXIAL ELECTROKINETIC TRAPPING OF SINGLE PARTICLES AT KHZ FEEDBACK RATES
Filip Strubbe, Vincent De Clercq, and Yerzhan Y. Ussembayev
Ghent University, BELGIUM

COUPLING ELECTROTHERMAL ROLLS AND DIELECTROPHORESIS FOR CONTINUOUS-FLOW SEPARATION OF NANOPARTICLES
Stanley D.E. Kushigbor and Levent Yobas
Hong Kong University of Science and Technology, HONG KONG

DNA EXTRACTION FROM CULTURE MEDIUM BY USING EWOD SYSTEM
Chen-En Chiang1, Tzu-Hui Wu2, Pei-Shin Jiang2, Chien-An Chen1, and Da-Jenf Yao1
1National Tsinghua University, TAIWAN and
2Industrial Technology Research Institute (ITRI), TAIWAN

FERROHYDRODYNAMICS OF BACTERIAL SWARM CONTROL
Nima Mirkhani, Thuy Trinh Nguyen, Tinotenda Gwisai, Michael Christiansen, and Simone Schuerle
ETH Zürich, SWITZERLAND

HIGH EFFICIENT AND SELECTABLE CONCENTRATION OF BACTERIA AND SERS PARTICLES THROUGH THE SYNERGIC EFFECT OF ACEOF AND DEP FOR RAPID BACTERIAL DETECTION FROM WHOLE BLOOD
Kuan-Hung Chen1, Shih-Han Lee1, Tseren-Onolt Ishdorj2, Chun-Wei Lee1, and Fan-Gang Tseng1,3
1National Tsing Hua University, TAIWAN, 2Mongolian University of Science and Technology, MONGOLIA, and 3Academia Sinica, TAIWAN
M234.h MICRO-SWIMMER TRAP-AND-RELEASE USING STANDING SURFACE ACOUSTIC WAVES
Mingyang Cui1, Minji Kim1, Mathieu Bottier1,2, Philip V. Bayly1, and J. Mark Meacham1
1Washington University, St. Louis, USA and
2Washington University School of Medicine, St. Louis, USA

M235.h SIMPLE AND PASSIVE MERGING-ON-DEMAND METHOD FOR REACTION ENGINEERING IN DROPLET MICROFLUIDICS
Medina Hamidović1, Uli Marta2, Helen Bridle2, Gerold Fink1, Robert Wille1, Andreas Springer2, and Werner Haselmayr1
1Johannes Kepler University Linz, AUSTRIA and
2Heriot-Watt University, UK

T229.h A FULLY INTEGRATED WEARABLE AC ELECTROTHERMAL ACTUATION PLATFORM FOR BIOFLUID MANIPULATION
Haisong Lin, Hannaneh Hojaiji, Shuyu Lin, Christopher Yeung, Yichao Zhao, Bo Wang, Meghana Malige, Yibo Wang, Kimber King, Wenzhuo Yu, Jiawei Tan, Zhaqing Wang, Xuanbing Cheng, and Sam Emaminejad
University of California, Los Angeles, USA

T230.h CAPILLARY FILLING OF COMPLEX FLUIDS IN MICROCHANNELS WITH ALTERED WETTABILITY
Kiarash Keshmiri1, Haibo Huang2, Abebaw Jemere3, and Neda Nazemifard1
1University of Alberta, CANADA, 2InnoTech Alberta, CANADA, and
3National Research Council of Canada, CANADA

T231.h DIELECTROPHORESIS CONFINEMENT OF NANO-BIOLOGICAL PARTICLES
Imman I. Hosseini, Zezhu Liu, Walter Reisner, and Sara Mahshid
McGill University, CANADA

T232.h DOUBLE EMULSION GENERATION USING CENTRIFUGAL MICROFLUIDIC PLATFORMS
Masoud Madadelahi1, Marc J. Madou1,2, Yeganeh Dorri Nokoorani3, Amir Shamloo3, and Sergio O. Martinez-Chapa1
1Tecnologico de Monterrey, MEXICO, 2University of California, Irvine, and USA, 3Sharif University of Technology, IRAN

T233.h FLUIDIZATION AND WALL SLIP OF SOFT GLASSY MATERIALS BY CONTROLLED SURFACE ROUGHNESS
Davide Ferraro1, Daniele Filippi2, Ladoslav Derzsi1,4, Piotr Garstecky4, Giampaolo Mistura3, Matteo Lulli2, Massimo Bernaschi2, Mauro Sbragaglia2, and Matteo Pierno1
1University of Padova, ITALY, 2University ”Tor Vergata” of Rome, ITALY, 3Istituto per le Applicazioni del Calcolo CNR, ITALY, and
4Polish Academy of Sciences, POLAND
T234.h IMAGING MICROFLUIDIC FLOWS WITH DNA MICROSCOPY
Hayato Onoue, Nicolas Lobato-Dauzier, Shu Okumura, Stephane Poulain, Soo Hyeon Kim, Teruo Fujii, and Anthony J. Genot
University of Tokyo, JAPAN

T235.h MINIATURIZED PROTEOMICS OF MAMMALIAN CELLS ON A DIGITAL MICROFLUIDICS DEVICE
Jan Leipert and Andreas Tholey
Kiel University, GERMANY

T236.h WIDE-FIELD IMAGING SYSTEM FOR DIGITAL CFU ASSAY THROUGH 10-MILLION DROPLET ANALYSIS
Sunghyun K, Juwha Lee, Joel Sánchez Barea, and Dong-Ku Kang
Incheon National University, KOREA

W230.h AUTOMATED PRE-ANALYTIC PROCESSING OF WHOLE SALIVA ON A CENTRIFUGAL MICROFLUIDIC PLATFORM FOR PROTEIN BIOMARKER ANALYSIS
Benita Johannsen1, Lara Müller1, Desirée Baumgartner1,2, Lena Karkossa1, Susanna M. Früh1,2, Nagihan Bostanci3, Michal Karpišek4, Roland Zengerle1,2, Nils Paust1,2, and Konstantinos Mitsakakis1,2
1Hahn-Schickard, GERMANY, 2University Freiburg, GERMANY, 3Karolinska Institutet, SWEDEN, and 4BioVendor Laboratorni Medicina a.s., CZECH REPUBLIC

W231.h CELLPROFILER IS A FIT TOOL FOR DROPLET DIGITAL IMAGE ANALYSIS
Simona Bartkova, Marko Vendelin, Pille Pata, and Ott Scheler, Tallinn University of Technology, ESTONIA

W232.h DIFFERENTIAL SECOND-DEGREE OF FREEDOM CENTRIFUGAL MICROFLUIDICS
Eimear Higgins1, Cian Merne1, Patrick Wogan1, David Collins1, Sarai M. Torres-Delgado2, Dario Mager2, and David J. Kinahan1
1Dublin City University, IRELAND and 2Karlsruhe Institute of Technology, GERMANY

W233.h EASY MODULE CHIP PLATFORM FOR MICROFLUIDICS
Tae Jae Lee1, Moon Keun Lee2, Nam Ho Bae2, Kyoung G. Lee1, Yoo Min Park3, Yun Seok Heo2, and Seok Jae Lee1
1National NanoFab Center (NNFC), KOREA and 2Keimyung University, KOREA

W234.h FLOW PROFILE THROUGH EXPOSED POROUS MEDIA IN CENTRIFUGAL MICROFLUIDICS
Daniel M. Kainz1, Susanna M. Früh1,2, Tobias Hutzenlaub1,2, Roland Zengerle1,2, and Nils Paust1,2
1University of Freiburg, GERMANY and 2Hahn-Schickard, GERMANY
M235.h
Mapping Complex Pressure Fields Using Swimming Microorganisms
Minji Kim, Philip V. Bayly, and J. Mark Meacham
Washington University, St. Louis, USA

W236.h
Oil/Water Partitioning and Microdialysis for Controlled Delivery of Hydrophobic Compounds in Droplet-Based Microfluidic Systems
Michal Vasina¹, Tomas Buryška¹,², Pavel Vanacek¹,², Fabrice Gielen¹,⁴, Liisa V. Vliet³, Zdenek Pilat³, Jan Jezek³, Pavel Zemanek³, Jiri Damborsky¹,², Florian Holfelder¹, and Zbynek Prokop¹,²
¹Masaryk University, CZECH REPUBLIC, ²St. Anne’s University Hospital, CZECH REPUBLIC, ³University of Exeter, UK, ⁴University of Cambridge, UK, and ⁵Czech Academy of Sciences, CZECH REPUBLIC

M236.h
3D Printing Protein Hydrogel Chips
Haiyang Jia and Petra Schwille
Max-Planck-Institute of Biochemistry, GERMANY

M237.h
Large-Scale Fabrication of Microfluidic Chips with Three-Dimensional Microstructures for Point of Care Application
Trieu Nguyen, Vinayaka Aaydha Chidambara, Dang Duong Bang, and Anders Wolff
Technical University of Denmark, DENMARK

M238.h
Wet Spinning of a Low Molecular Weight Hydrogel Towards 3D Printing
Anaïs Chalard, Sandrine Assié-Souleille, Charline Blatché, Barbara Lonetti, Nathalie Saffon-Merceron, Isabelle Lubinoux, Laurence Vaysse, Laurent Malaquin, Juliette Fitremann, and Pierre Joseph
Université de Toulouse, FRANCE

T237.h
Development of Cell Culture Microdevice Using Gelatin Gel
Satoko Sasaki and Kae Sato
Japan Women's University, JAPAN

T238.h
Macro Valve and Peristaltic Pump with Cleanroom-Free Fabrication for Multiplexed Organ-on-Chip Applications
Elsbeth G.B.M. Bossink, Anke R. Vollertsen, Loes I. Segerink, and Mathieu Odijk
University of Twente, THE NETHERLANDS

T239.h
Rapid Fabrication of PMMA/PET-E/PMMA for Thermoplastic Microfluidic Membrane Devices
Henrik Persson¹,²,³, Siwan Park¹, Michael Mohan¹, Edmond Young¹, and Craig A. Simmons¹,³
¹University of Toronto, CANADA, ²Lund University, SWEDEN, and ³Ted Roger’s Centre for Heart Research, CANADA
<table>
<thead>
<tr>
<th>Poster</th>
<th>Title</th>
<th>Authors</th>
<th>Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>W237.h</td>
<td>3D BIOPRINTING OF ALGINATE HYDROGEL SCAFFOLDS USING FINE CALCIUM CHLORIDE MIST DROPLETS</td>
<td>Ben MacCallum, Emad Naseri, Wyatt MacNevin, and Ali Ahmadi</td>
<td>University of Prince Edward Island, CANADA</td>
</tr>
<tr>
<td>W238.h</td>
<td>FABRICATION OF 3D-MICROSTRUCTURES USING A DMD-BASED TECHNOLOGY: PROOF OF CONCEPT AND APPLICATION</td>
<td>Marie Camman1,2, Catherine Villard2, Audric Jan2, Guillaume Laffite2,</td>
<td>1Alvéole, FRANCE and 2Université Paris Sciences et Lettres, FRANCE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Josselin Ruaudel1, Olivier Lesage2, and Matthieu Opitz1</td>
<td></td>
</tr>
<tr>
<td>W239.h</td>
<td>MINIATURISING SUPERCritical ANGLE FLUORESCENCE AND TOTAL INTERNAL REFLECTION FLUORESCENCE STRUCTURES FOR A MICROFLUIDIC SYSTEM USING IN DIAGNOSTIC APPLICATIONS</td>
<td>Trieu Nguyen and Anders Wolff</td>
<td>Technical University of Denmark, DENMARK</td>
</tr>
<tr>
<td>M239.h</td>
<td>SOFT ACTUATORS WITH PROGRAMMABLE MAGNETIC PARTICLES</td>
<td>Heng-Yu Shen1, Chih-Cheng Cheng2, Tien-Kan Chung2, and Yen-Wen Lu1</td>
<td>1National Taiwan University, TAIWAN and 2National Chiao Tung University, TAIWAN</td>
</tr>
<tr>
<td>W240.h</td>
<td>MICROFLUIDICS-BASED RANDOM NUMBER GENERATOR DRIVEN BY FINGER PUSH AND GRAVITY FORCE</td>
<td>Korakot Boonyaphon1, Shuichi Takayama2, and Sung-Jin Kim1</td>
<td>1Konkuk University, KOREA and 2Georgia Institute of Technology, USA</td>
</tr>
<tr>
<td>M240.h</td>
<td>AN INTEGRATED GRAPHENE SENSOR FOR CLINICAL BIOMARKERS DETECTION IN A DIFFERENTIAL AND PORTABLE WAY</td>
<td>Yunlu Pan, Cong Huang, Wenwen Shao, and Zhuang Hao</td>
<td>Harbin Institute of Technology, CHINA</td>
</tr>
<tr>
<td>M241.h</td>
<td>DEVELOPMENT OF AN RAPID DIAGNOSTIC TEST MICROFLUIDIC CHIP USING POLYCARBONATE FILM FOR MALARIA DETECTION</td>
<td>Yong Tae Kim, Jihye Choi, and Heungsop Shin</td>
<td>Korea Polytechnic University, KOREA</td>
</tr>
<tr>
<td>M242.h</td>
<td>INTEGRATED SYSTEM USING A GAS PRECONCENTRATOR AND A COLORIMETRIC SENSOR ARRAY FOR EXHALED BREATH ANALYSIS</td>
<td>Hye-Lim Kang1, Sumi Yoon1, Dong-Ki Hong1, Won-Hye Kim1, Woo Kyeong Seong1, Hana Cho1, Dong-Sik Shin2, and Kook-Nyung Lee1</td>
<td>1Korea Electronics Technology Institute, KOREA and 2Sookmyung Women’s University, KOREA</td>
</tr>
</tbody>
</table>
M243.h LIGHT-CONTROLLED COLLECTION-AND-RELEASE OF BIOMOLE-CULES BY AN ON-CHIP NANOSTRUCTURED DEVICE
Vadim Krivitsky, Ella Borberg, Marina Basovich, Omri Heifler, and Fernando Patolsky
Tel Aviv University, ISRAEL

M244.h MICROTITER PLATE VIABILITY ASSAY TO EXTEND RESULTS OF THERMAL SENSOR WITH DISINFECTANTS ETHANOL, PERACETIC ACID AND SODIUM HYPOCHLORITE
Tobias Wieland, Jan K. Kotthaus, Michael Bergmann, and Gerald A. Urban
University of Freiburg, GERMANY

M245.h MULTIPLEXED ELECTROCHEMICAL PLATFORM FOR SEPSIS DIAGNOSTICS
Uroš Zupančič¹, Pawan Jolly², Pedro Estrela³, Despina Moschou¹, and Donald E. Ingber²,³
¹ University of Bath, UK, ² Harvard University, USA, and ³ Boston Children’s Hospital and Harvard Medical School, USA

M246.h PORTABLE FLOW CELL FOR DETECTION OF MULTIPLE MICROCHANNELS IN A SINGLE CHIP
Sammer-ul Hassan and Xunli Zhang
University of Southampton, UK

M247.h SPECIFIC DETECTION OF POINT-MUTATION-POSITION USING BIOLOGICAL NANOPORE
Ping Liu, Keisuke Shimizu, and Ryuji Kawano
Tokyo University of Agriculture and Technology, JAPAN

T240.h 3D NANOPOROUS CARBON MICROELECTRODES WITH SPONGE-LIKE EDGE STRUCTURES FOR HEAVY METAL SENSING
Jongmin Lee and Heungjoo Shin
Ulsan National Institute of Science and Technology (UNIST), KOREA

T241.h ANTIBODY-FREE ASSAY FOR ELECTROCHEMICAL ß-LACTAM MONITORING
University of Freiburg, GERMANY

T242.h EFFECT OF ADDITIONAL THIN LAYER ON CHEMICAL SWELLING-INDUCED COLOR CHANGE IN COLLOIDAL CRYSTAL-PDMS COMPOSITE
Hyung-Kwan Chang, Hyojeong Kim, and Jungyul Park
Sogang University, KOREA

T243.h INTEGRATING APTAMERS WITH PAPER-BASED MICROSCALE ANALYTICAL DEVICES FOR BIOMEDICAL MONITORING
Meng Liu, Christy Liu, Yingfu Li, and John D. Brennan
McMaster University, CANADA
T244.h LIVE QUANTIFICATION OF CELL VIABILITY VIA NEUTRAL RED UPTAKE USING LENS-FREE IMAGING
Brian J. Nablo², Jung-Joon Ahn², Kiran Bhadriraju¹, Jong Muk Lee², and Darwin Reyes¹
¹National Institute of Standards and Technology (NIST), USA and
²SOL Inc., KOREA

T245.h MICROWAVE RADARS FOR LABEL FREE SINGLE-CELL DETECTION IN REAL TIME SYNCHRONIZED WITH OPTICAL IMAGE
Arda Secme, Hadi S. Piseheh, H. Dilara Uslu, and Selim Hanay
Bilkent University, TURKEY

T246.h PASSIVE WIRELESS SENSING OF MICROTISSUE PROPERTIES
Lei Dong¹², Mario M. Modena¹, and Andreas Hierlemann¹
¹ETH Zürich, SWITZERLAND and ²Southeast University, CHINA

T247.h REAL-TIME AND MULTIPLEXED IMPEDANCE MONITORING OF ADIPOGENIC DIFFERENTIATION
Lianmei Jiang¹², Junjun Li¹, Jianmiao Liu³, and Yong Chen¹
¹École Normale Supérieure, FRANCE, ²Macquarie University, AUSTRALIA, and ³CNRS, FRANCE

W241.h WITHDRAWN

W242.h BP0D: WIRELESS DISSOLVED OXYGEN SENSOR-INTEGRATED PLATFORM TOWARDS BIOPROCESS MONITORING
University of Maryland, USA

W243.h INLAID MICROFLUIDICS FOR NUTRIENT MONITORING
Sean C. Morgan, Edward A. Luy, and Vincent J. Sieben
Dalhousie University, CANADA

W244.h LABEL-FREE DISCRIMINATION FOR CARCINOMA CELLS THROUGH IONIC CURRENT SIGNALS
Kazumichi Yokota, Muneaki Hashimoto, Kazuaki Kajimoto, Masato Tanaka, and Masatoshi Kataoka
National Institute of Advanced Industrial Science and Technology (AIST), JAPAN

W245.h LOW-COST GLUCOSE SENSOR USING COMPACT DISC SUBSTRATES
Nityanand Kumawat¹, Priyamvada Venugopalan¹, and Sunil Kumar¹²
¹New York University, Abu Dhabi, UAE and ²New York University, USA

W246.h MULTIPLEX, LABEL-FREE QUANTIFICATION OF miRNA BY REFLECTIVE PHANTOM INTERFACE
Giuliano Zanchetta, Thomas Carzaniga, Luka Vanjur, Luca Casiraghi, Tommaso Bellini, and Marco Buscaglia
Università degli Studi di Milano, ITALY
W247.h PLANT WATER POTENTIAL SENSOR USING NANO POROUS ANODIC ALUMINIUM OXIDE
Sanghoon Han, Tae Woong Yun, and Junghoon Lee
Seoul National University, KOREA

W248.h SENSITIVITY IMPROVEMENT OF ELECTROCHEMICAL IMMUNOASSAY USING MAGNETIC PARTICLES TO KEEP A BARE INDIUM TIN OXIDE (ITO) ELECTRODE
Sunga Song, Young Joo Kim, Hye-Lim Kang, Sumi Yoon, Dong-Ki Hong, Won-Hyo Kim, Woo Kyeong Seong, and Kook-Nyung Lee
Korea Electrics Technology Institute, KOREA
Microfluidics for Hematology

Sponsored by CBMS

A CBMS WORKSHOP

APRIL 6-7, 2020 • CHICAGO, ILLINOIS USA

Mark your calendar!

Abstract submission deadline: November 21st, 2019

Chair
Ian Papautsky
University of Illinois at Chicago

Co-Chairs
Daniel Irimia
Massachusetts General Hospital
Wilbur A. Lam
Georgia Institute of Technology, Emory University, and Children’s Healthcare of Atlanta

microhematology.org

26 – 28 August, 2020
University of Glasgow, Scotland

the save date!

Acoustofluidics 2020

CHAIR
Thomas Franke
University of Glasgow, SCOTLAND

acoustofluidics.net
VENTURE CAPITAL and M&A ADVISORY for MEMS, sensors, and microtechnology companies

MICROTECH VENTURES
microtechventures.com
μTAS 2020
Palm Springs
CALIFORNIA
OCTOBER 4–8, 2020
THE 24TH INTERNATIONAL CONFERENCE ON MINIATURIZED SYSTEMS FOR CHEMISTRY AND LIFE SCIENCES
SAVE THE DATE!
October 4–8, 2020
Palm Springs Convention Center
CALIFORNIA, USA

Conference Chairs:
Amy E. Herr – University of California, Berkeley, USA
Joel Voldman – Massachusetts Institute of Technology, USA

cbmsociety.org/microtas2020